Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 11 2021 lúc 14:45

\(\Leftrightarrow2P=6x+4y+\dfrac{12}{x}+\dfrac{16}{y}\\ \Leftrightarrow2P=\left(\dfrac{12}{x}+3x\right)+\left(\dfrac{16}{y}+y\right)+3\left(x+y\right)\\ \Leftrightarrow2P\ge2\sqrt{36}+2\sqrt{16}+3\cdot6=12+8+18=38\\ \Leftrightarrow P\ge19\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}3x^2=12\\y^2=16\\x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

ANHOI
Xem chi tiết
Hoàng Lê Bảo Ngọc
15 tháng 8 2016 lúc 21:35

Ta có : \(x+y\ge2\sqrt{xy}\) \(\Rightarrow xy+2\sqrt{xy}\le8\) hay \(\left(\sqrt{xy}+1\right)^2\le9\)

\(\Rightarrow\sqrt{xy}+1\le3\Rightarrow xy\le4\)

Ta có : \(\left(9-xy\right)^2=\left(x+y+1\right)^2=x^2+y^2+1+2\left(x+y+xy\right)=x^2+y^2+17\)

Vì \(xy\le4\Rightarrow9-xy\ge5\Rightarrow\left(9-xy\right)^2\ge25\Leftrightarrow x^2+y^2+17\ge25\)

\(\Rightarrow A\ge8\) . Dấu "=" xảy ra khi x = y = 2

Vậy Min A = 8 tại x = y = 2

Lightning Farron
15 tháng 8 2016 lúc 21:39

Ta có:

\(x^2+y^2=\)

\(=\frac{1}{3}\left(x^2+4+y^2+4\right)+\frac{2}{3}\left(x^2+y^2\right)-\frac{8}{3}\)

\(\ge\frac{4}{3}\left(x+y+xy\right)-\frac{8}{3}=8\)

\(\Rightarrow P\ge8\)

Dấu = khi \(x=y=2\)

Vậy MinP=8 khi x=y=2

 

Phạm Ngọc Mai
Xem chi tiết
Trần Anh Hoàng
Xem chi tiết
Akai Haruma
12 tháng 1 2023 lúc 19:23

Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{2}{x}+\frac{8}{9y}+\frac{18}{25z}\right)(x+y+z)\geq (\sqrt{2}+\sqrt{\frac{8}{9}}+\sqrt{\frac{18}{25}})^2\)

$\Leftrightarrow A.2\geq \frac{2312}{225}$

$\Leftrightarrow A\geq \frac{1156}{225}$

Vậy $A_{\min}=\frac{1156}{225}$

Hoàng Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 13:53

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3

Hoàng Nhật
Xem chi tiết
Akai Haruma
24 tháng 12 2021 lúc 8:19

Lời giải:

Ta có: $A=x^2+\frac{1}{y(x-y)}$. Đặt $x-y=a$ với $a>0$ thì áp dụng BĐT AM-GM ta có:

$A=(a+y)^2+\frac{1}{ay}\geq 4ay+\frac{1}{ay}\geq 2\sqrt{4ay.\frac{1}{ay}}=4$

Vậy $A_{\min}=4$ khi $x=\sqrt{2}; y=\frac{1}{\sqrt{2}}$

hotboy2002
Xem chi tiết
Lương Ngọc Anh
28 tháng 4 2016 lúc 19:36

áp dụng BĐT côsi ta có : \(\frac{x^2}{y^2}+\frac{y^2}{x^2}>=2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2;\frac{x}{y}+\frac{y}{x}>=2\)

=> B>= 2-3*2+5=1

Dấu bằng khi x=y=1

hotboy2002
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết