tìm số hữu tỉ x để phân thức \(\frac{10}{x^2+1}\) có giá trị là số nguyên
Tìm số hữu tỉ x để phân thức \(A=\frac{10}{x^2+1}\)có giá trị nguyên
Ta co: A=\(\frac{10}{x^2+1}\) x thuoc Z
=>\(x^2\) +1 U(10)={-1;1;-2;2;-5;5;-10;10}
=>\(x^2\)={-2;0;-3;1;-6;4;-11;9}
=>x={0;1;2;3}
tìm số hữu tỉ x để phân thức 15/x^2+3 có giá trị là số nguyên
giúp mình với
tìm các số hữu tỉ X để biến thức A=\(\frac{5}{x^2+1}\) nhận giá trị là một số nguyên
ĐỂ A nhận gia trị nguyên
\(\Rightarrow5⋮x^2+1\Rightarrow x^2+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow x^2=\left\{0;-2;4;-6\right\}\)
\(\Rightarrow x=\left\{0;\pm2\right\}\)
Tìm số hữu tỉ x để biểu thức P = \(\dfrac{x^2-4x}{x^2+2}\) có giá trị là một số nguyên dương.
Để P là số nguyên dương thì x^2-4x>=0 và x^2-4x chia hết cho x^2+2
=>x^2+2-4x-2 chia hết cho x^2+2 và (x>=4 hoặc x<=0)
=>-4x-2 chia hết cho x^2+2 và (x>=4 hoặc x<=0)
=>4x+2 chia hết cho x^2+2 và (x>=4 hoặc x<=0)
=>16x^2-4 chia hết cho x^2+2 và (x>=4 hoặc x<=0)
=>16x^2+32-36 chia hết cho x^2+2 và (x>=4 hoặc x<=0)
=>\(x^2+2\in\left\{2;3;4;6;9;12;18;36\right\}\) và (x>=4 hoặc x<=0)
=>\(x\in\left\{0;4;\sqrt{34};-\sqrt{34};-1;-\sqrt{2};-2;-\sqrt{7};-\sqrt{10};-4\right\}\)
Khi đề yêu cầu P nguyên mà ko có điều kiện x nguyên thì phương pháp tốt nhất luôn là tìm miền giá trị của P từ đó lọc ra những số nguyên rồi tìm ngược lại x
\(P=\dfrac{x^2-4x}{x^2+2}=\dfrac{-\left(x^2+2\right)+2x^2-4x+2}{x^2+2}=-1+\dfrac{2\left(x-1\right)^2}{x^2+2}\ge-1\)
\(P=\dfrac{2\left(x^2+2\right)-x^2-4x-4}{x^2+2}=2-\dfrac{\left(x+2\right)^2}{x^2+2}\le2\)
\(\Rightarrow-1\le P\le2\)
Mà \(P\) nguyên dương \(\Rightarrow P=\left\{1;2\right\}\)
- Với \(P=1\Rightarrow\dfrac{x^2-4x}{x^2+2}=1\Rightarrow-4x=2\Rightarrow x=-\dfrac{1}{2}\)
- Với \(P=2\Rightarrow\dfrac{x^2-4x}{x^2+2}=2\Rightarrow x^2+4x+4=0\Rightarrow x=-2\)
Vậy \(x=\left\{-2;-\dfrac{1}{2}\right\}\)
Tìm số nguyên x để phân số sau có giá trị là 1 số nguyên
\(E=\frac{5x+9}{x+5}\).
Viết dưới dạng số hữu tỉ
để 5x+9/x+5 có giá trị là 1 số nguyên
suy ra 5x+9 chia hết x+5
<=> 5x+25-16 chia hết x+5
Vì 5x+25 chia hết x+5
suy ra 16 chia hết x+5
suy ra x+5 thuộc Ư(16)=(1;-1;-2;2;4;-4;8;-8;16;-16)
suy ra x=-4;-6;3;-7;-1;-9;3;-13,11,-21
Tìm các giá trị nguyên của x để phân thức M có giá trị là 1 số nguyên:
\(M=\frac{10\cdot x^2-7\cdot x-5}{2\cdot x-3}\)
Ta có \(M=\frac{10x^2-7x-5}{2x-3}=5x+4+\frac{7}{2x-3}\)
Để \(M=5x+4+\frac{7}{2x-3}\) là số nguyên <=> \(\frac{7}{2x-3}\)là số nguyên
\(\Rightarrow7⋮2x-3\) hay \(2x-3\inƯ\left(7\right)\)
\(\RightarrowƯ\left(7\right)=\) { - 7; - 1; 1; 7 }
Ta có : 2x - 3 = 7 <=> 2x = 10 => x = 5 (t/m)
2x - 3 = 1 <=> 2x = 4 => x = 2 (t/m)
2x - 3 = - 1 <=> 2x = 2 => x = 1 (t/m)
2x - 3 = - 7 <=> 2x = - 4 => x = - 2 (t/m)
Vậy với x \(\in\) { - 2; 1; 2; 5 } thì M là số nguyên
Bài 1: Tìm x thuộc Z để A= \(\frac{x-5}{9-x}\)
a) Là số hữu tỉ dương
b) Không là số hữu tỉ dương mà cũng không là số hữu tỉ âm
c) A có giá trị là số nguyên
d) A có giá trị lớn nhất, nhỏ nhất
Tìm tất cả các số nguyên x để số hữu tỉ A=x+1/x-2(x khác 2) có giá trị là số nguyên
\(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}=1+\dfrac{3}{x-2}\)
A là số nguyên khi: \(\dfrac{3}{x-2}\) nguyên
3 ⋮ x - 2
\(\Rightarrow x-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{3;1;5;-1\right\}\)
Tìm tất cả các số nguyên x để số hữu tỉ \(A=\dfrac{x+1}{x-2}\left(x\ne2\right)\) có giá trị là số nguyên
Ta có: \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}=\dfrac{x-2}{x-2}+\dfrac{3}{x-2}=1+\dfrac{3}{x-2}\)
Để A là số nguyên thì \(x-2\inƯ\left(3\right)=\left\{-1,-3,1,3\right\}\)
Ta có bảng giá trị:
x - 2 | -1 | -3 | 1 | 3 |
x | 1 (tm) | -1 (tm) | 3 (tm) | 5 (tm) |
Vậy ...
Ta có : \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}\)
\(\Rightarrow A=1+\dfrac{3}{x-2}\)
Vì x là số nguyên nên để A cũng là số nguyên thì : \(\dfrac{3}{x-2}\in Z\)
\(\Rightarrow3⋮\left(x-2\right)\)
\(\Rightarrow\left(x-2\right)\inƯ\left(3\right)\)
Do đó ta có bảng :
x-2 | 1 | 3 | -1 | -3 |
x | 3 | 5 | 1 | -1 |
Vậy..........