CMR f(x) chia hết cho g(x):
a) \(f\left(x\right)=x^{2002}+x^{2000}+1;g\left(x\right)=x^2+x+1\)
CMR: f(x) chia hết cho g(x) với:
\(f\left(x\right)=x^{99}+x^{88}+x^{77}+...+x^{11}+1\)
\(g\left(x\right)=x^9+x^8+x^7+...+x+1\)
CMR: f(x) chia hết cho g(x) với:
\(f\left(x\right)=x^{99}+x^{88}+x^{77}+...+x^{11}+1\)
\(g\left(x\right)=x^9+x^8+x^7+...+x+1\)
CMR: \(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)chia hết cho \(g\left(x\right)=x^2-x\)
Cho đa thức \(f\left(x\right)=ax^2+bx+c\) \(\left(a\ne0\right)\). Tìm a, b, c biết \(f\left(x\right)-2020\)chia hết cho x - 1, \(f\left(x\right)+2021\) chia hết cho x + 1 và \(f\left(x\right)\) nhận giá trị bằng 2 khi x = 0
Mình có nghĩ ra cách này mọi người xem giúp mình với
f(x) = \(ax^2+bx+c\)
Ta có f(0) = 2 => c = 2
Ta đặt Q(x) = \(ax^2+bx+c-2020\)
và G(x) = \(ax^2+bx+c+2021\)
f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư
\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)
Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0
hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)
G(x) chia cho x + 1 số dư
\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)
Mà G(x) chia hết cho x + 1 nên \(R_2\)=0
hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)
Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)
\(f\left(0\right)=2\Rightarrow c=2\)
\(f\left(x\right)-2020\) chia hết \(x-1\Rightarrow f\left(1\right)-2020=0\)
\(\Rightarrow a+b+c-2020=0\Rightarrow a+b-2018=0\)
\(f\left(x\right)+2021\) chia hết \(x+1\Rightarrow f\left(-1\right)+2021=0\)
\(\Rightarrow a-b+c+2021=0\Rightarrow a-b+2023=0\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)
Cho f(x) là đa thức với hệ số hữu tỉ. CMR: Nếu \(f\left(x^3\right)\)chia hết cho x-1 thì \(f\left(x^3\right)\) chia hết cho \(x^2+x+1\)
\(F\left(x\right)=x^3+x^2+a\) ; \(G\left(x\right)=x+2\)
Tìm a để F(x) chia hết cho G(x)
Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow a-4=0\Leftrightarrow a=4\)
Vậy a= 4 thì f(x) chia hết cho g(x)
mk có thể tự chia ko ,mk chia r mà nó lại bị lỗi .
Xác định các hệ số a,b để \(f\left(x\right)=x^4+3x^3-x^2+\left(2a-b\right)x+3b+a\) chia hết cho \(g\left(x\right)=x^2+3x-1\)
f(x) chia hết cho x^2+3x-1
=>(2a-b)=0 và 3b+a=0
=>a=b=0
tìm a,b để đa thứ f(x) chia hết cho đa thức g(x)
\(a.f\left(x\right)=x^4-9x^3+21x^2+ax+b: g\left(x\right)=x^2-x-1\)
\(b.f\left(x\right)=x^4-x^3+6x^2-x+a: g\left(x\right)=x^2-x+5\)
\(c.f\left(x\right)=3x^3+10x^2-5+a: g\left(x\right)=3x+1\)
em chưa cho đa thức f(x) và g(x) nà
a: \(\dfrac{f\left(x\right)}{g\left(x\right)}\)
\(=\dfrac{x^4-9x^3+21x^2+ax+b}{x^2-x-1}\)
\(=\dfrac{x^4-x^3-x^2-8x^3+8x^2+8x+14x^2-14x-14+\left(a+6\right)x+b+14}{x^2-x-1}\)
\(=x^2-8x+14+\dfrac{\left(a+6\right)x+b+14}{x^2-x-1}\)
Để f(x) chia hết cho g(x) thì a+6=0 và b+14=0
=>a=-6 và b=-14
b: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4-x^3+5x^2+x^2-x+5+a-5}{x^2-x+5}\)
\(=x^2+1+\dfrac{a-5}{x^2-x+5}\)
Để f(x) chia hết g(x) thì a-5=0
=>a=5
Chứng minh rằng f(x) chia hết cho g(x) với :
\(f\left(x\right)=x^{99}+x^{88}+x^{77}+....+x+1\)
\(g\left(x\right)=x^9+x^8+x^7+....+x+1\)
Sửa lại đề bài nhé . \(f\left(x\right)=x^{99}+x^{88}+x^{77}+...+x^{11}+1\)
Xét hiệu \(f\left(x\right)-g\left(x\right)=x^9\left(x^{90}-1\right)+x^8\left(x^{80}-1\right)+x^7\left(x^{70}-1\right)+...+x\left(x^{10}-1\right)\)
\(=x^9\left[\left(x^{10}\right)^9-1\right]+x^8\left[\left(x^{10}\right)^8-1\right]+x^7\left[\left(x^{10}\right)^7-1\right]+...+x\left(x^{10}-1\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)⋮\left(x^{10}-1\right)\)
Mà \(x^{10}-1=\left(x-1\right)\left(x^9+x^8+x^7+...+x+1\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)⋮g\left(x\right)\Rightarrow f\left(x\right)⋮g\left(x\right)\)
Chúc bạn học tốt