Tìm a và b để đa thức f(x) chia hết cho g(x)
a) \(f\left(x\right)=3x^4+5x^3+ax^2+b+10\)
\(g\left(x\right)=\left(x-1\right).\left(x+2\right)\)
\(F\left(x\right)=x^3+x^2+a\) ; \(G\left(x\right)=x+2\)
Tìm a để F(x) chia hết cho G(x)
Bài 1 :
Tìm tất cả cac số nguyên n để \(2n^2+n-7\) chia hết cho \(n-2\)
Bài 2 : Tìm các hằng số a và b sao cho đa thức f(x) chia hết cho đa thức g(x)
a) \(f\left(x\right)=\left(x^4+ax^2+b\right)\) ; \(g\left(x\right)=\left(x^2-x+1\right)\)
b) \(f\left(x\right)=ax^3+bx^2+5x-50\) ; \(g\left(x\right)=x^2+3x+3\)
Cho g(x) là 1 đa thức với hệ số nguyên. CM: Đa thức \(f\left(x\right)=x^2+x.g\left(x^3\right)\) không chia hết cho đa thức \(x^2-x+1\)
Cho g(x) là 1 đa thức với hệ số nguyên. CM: Đa thức \(f\left(x\right)=x^2+x.g\left(x^3\right)\) không chia hết cho đa thức: \(x^2-x+1\)
CMR: \(f\left(x\right)⋮g\left(x\right)\) biết: \(f\left(x\right)=\left(x+1\right)^{2n}-x^{4n}-2x+1\)
\(g\left(x\right)=x.\left(x+1\right).\left(2x+1\right)\) với n thuộc N
Xác định hệ số a, b để f(x) chia hết cho g(x), với:
\(f\left(x\right)=x^4+4\)
\(g\left(x\right)=x^2+ax+b\)
Tìm a và b để đa thức f(x) chia hết cho g(x)
a) \(f\left(x\right)=2x^3-5x^2+ax+b\)
\(g\left(x\right)=x^2-4\)
Tìm a và b để đa thức f(x) chia hết cho g(x)
a) \(f\left(x\right)=2x^3-5x^2+ax+b\)
\(g\left(x\right)=x^2-4\)