Những câu hỏi liên quan
Khánh Huyền $$$
Xem chi tiết
Lightning Farron
10 tháng 1 2017 lúc 23:06

Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\left(1\right)\)

*)Xét \(x+y+z\ne0\left(2\right)\). Từ (1) và (2)

\(\Rightarrow x=y=z\). Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=2\cdot2\cdot2=8\)

*)Xét \(x+y+z=0\)\(\Rightarrow\left\{\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=\frac{-z}{y}\cdot\frac{-x}{z}\cdot\frac{-y}{x}=-1\)

Kuro Kazuya
10 tháng 1 2017 lúc 23:11

a)

Ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\left\{\begin{matrix}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z-x=x\\z+x-y=y\\x+y-z=z\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\) (1)

Ta có \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(\Rightarrow B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Thế (1) vào biểu thức B

\(\Rightarrow B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}\)

\(\Rightarrow B=2.2.2=8\)

Vậy biểu thức \(B=8\)

Huỳnh Bảo Ngọc
12 tháng 1 2017 lúc 21:20

b) Theo mình bằng 4

bùi thị thùy linh
Xem chi tiết
bùi thị thùy linh
29 tháng 11 2019 lúc 18:32

mik đag cần gấp các bn giải nhanh dùm mik nha

Khách vãng lai đã xóa
Hoàng Quốc Tuấn
Xem chi tiết
Lê Hoàng Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2020 lúc 22:27

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=ak\\y=bk\\z=ck\end{matrix}\right.\)

Ta có: \(H=\frac{xyz\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{ak\cdot bk\cdot ck\cdot\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\cdot\left(ak+bk\right)\cdot\left(bk+ck\right)\cdot\left(ck+ak\right)}\)

\(=\frac{k^3\cdot abc\cdot\left(a+b\right)\left(b+c\right)\left(c+a\right)}{k^3\cdot abc\cdot\left(a+b\right)\left(b+c\right)\left(c+a\right)}=1\)

Vậy: H=1

le tri tien
20 tháng 8 2020 lúc 8:04

đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Leftrightarrow\left\{{}\begin{matrix}x=ak\\y=bk\\z=ck\end{matrix}\right.\)

theo giả thiết ta có \(H=\frac{xyz\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

thay \(H=\frac{ak.bk.ck\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(ak+bk\right)\left(bk+ck\right)\left(ck+ak\right)}\)

\(\Leftrightarrow H=\frac{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left[k\left(a+b\right)\right]\left[k\left(b+c\right)\right]\left[k\left(c+a\right)\right]}\)

\(\Leftrightarrow H=\frac{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc.k\left(a+b\right).k\left(b+c\right).k\left(c+a\right)}\)

\(\Leftrightarrow H=\frac{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}=1\)

Vậy H = 1

Nguyễn Thiều Công Thành
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
♡ ♡ ♡ ♡ ♡
Xem chi tiết
Trịnh Trân Trân
2 tháng 1 2017 lúc 23:04

Hay quớ ak! Mơn m nhìu nha ný! <3 <3 <3 (not thả thính =))))

Mai Tiến Đỗ
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 10 2020 lúc 15:43

1a.

\(2P=1-\frac{bc}{2a^2+bc}+1-\frac{ca}{2b^2+ca}+1-\frac{ab}{2c^2+ab}\)

\(\Rightarrow2P=3-\left(\frac{bc}{2a^2+bc}+\frac{ca}{2b^2+ca}+\frac{ab}{2c^2+ab}\right)\)

\(\Rightarrow2P=3-\left(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{c^2a^2}{2b^2ca+c^2a^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\right)\)

\(\Rightarrow2P\le3-\frac{\left(ab+bc+ca\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=3-1=2\)

\(\Rightarrow P\le1\)

\(P_{max}=1\) khi \(a=b=c\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
25 tháng 10 2020 lúc 15:44

1b.

\(Q=\frac{a^2}{5a^2+b^2+c^2+2bc}+\frac{b^2}{5b^2+a^2+c^2+2ca}+\frac{c^2}{5c^2+a^2+b^2+2ab}\)

\(Q=\frac{a^2}{a^2+b^2+c^2+\left(2a^2+bc\right)+\left(2a^2+bc\right)}+\frac{b^2}{a^2+b^2+c^2+\left(2b^2+ca\right)+\left(2b^2+ca\right)}+\frac{c^2}{a^2+b^2+c^2+\left(2c^2+ab\right)+\left(2c^2+ab\right)}\)

\(\Rightarrow Q\le\frac{1}{9}\left(\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}+2\left(\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\right)\right)\)

\(\Rightarrow Q\le\frac{1}{9}\left(1+2\left(\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\right)\right)\)

Theo kết quả câu a ta có:

\(\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\le1\)

\(\Rightarrow Q\le\frac{1}{9}\left(1+2\right)=\frac{1}{3}\)

\(Q_{max}=\frac{1}{3}\) khi \(a=b=c\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
25 tháng 10 2020 lúc 15:44

2.

Do \(x+y+z=\frac{3}{2}\Rightarrow x< \frac{3}{2}< 2\)

Ta có:

\(VT=x+x.4y\left(\frac{1}{2}+z\right)\le x+x\left(\frac{1}{2}+z+y\right)^2=x+x\left(\frac{1}{2}+\frac{3}{2}-x\right)^2\)

\(\Leftrightarrow VT\le x+x\left(2-x\right)^2=x^3-4x^2+5x\)

\(\Leftrightarrow VT\le x^3-4x^2+5x-2+2=\left(x-1\right)^2\left(x-2\right)+2\le2\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;\frac{1}{2};0\right)\)

Khách vãng lai đã xóa
bach nhac lam
Xem chi tiết
Trần Thùy Linh
25 tháng 4 2020 lúc 13:04

\(A=\frac{a}{ab+c\left(a+b+c\right)}+\frac{b}{bc+a\left(a+b+c\right)}+\frac{c}{ca+b\left(a+b+c\right)}\)

\(=\frac{a}{\left(b+c\right)\left(a+c\right)}+\frac{b}{\left(a+b\right)\left(a+c\right)}+\frac{c}{\left(a+b\right)\left(c+b\right)}\)

Áp dụng bđt AM-GM ta có

\(A=\frac{a\left(a+b\right)+b\left(b+c\right)+c\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\ge27.\frac{a^2+b^2+c^2+ab+bc+ca}{8\left(a+b+c\right)^3}\)\(=\frac{a^2+b^2+c^2+ab+bc+ca}{8}\)

\(=\frac{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}{8}\)\(\ge\frac{9-\frac{\left(a+b+c\right)^2}{3}}{8}=\frac{9-3}{8}=\frac{3}{4}\)

Dấu "=" xảy ra khi a=b=c=1

tthnew
25 tháng 4 2020 lúc 16:02

b) Mạnh hơn, và dễ dàng hơn là:

\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{\sum c\left(a-b\right)^2}{abc}\)

Nó tương đương với: \({\frac {{a}^{2}}{{b}^{2}}}+{\frac {{b}^{2}}{{c}^{2}}}+{\frac {{c}^{2} }{{a}^{2}}}+3-2\,{\frac {a}{b}}-2\,{\frac {b}{c}}-2\,{\frac {c}{a}} \geqq 0\)

Là hiển nhiên vì \(\frac{a^2}{b^2}+1\ge\frac{2a}{b}\)

Đơn giản:))

tthnew
25 tháng 4 2020 lúc 16:46

a) Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow ab+bc+ca=1;0< a,b,c< 1\)

Cần chứng minh: \(P=\sum\frac{\frac{1}{a}-1}{\frac{1}{b^2}}=\sum\frac{b^2-ab^2}{a}\ge\sqrt{3}-1\)

Hay là: \(\left(\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\right)\sqrt{ab+bc+ca}\ge\left(\sqrt{3}-1\right)\left(ab+bc+ca\right)+a^2+b^2+c^2\)

\(\Leftrightarrow\left(\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\right)^2\left(ab+bc+ca\right)\ge\) \(\Big[ (\sqrt{3} -1) (ab+bc+ca) +a^2+b^2+c^2\Big]^2\)

Giả sử \(c=\min\{a,b,c\}\) và đặt \(a=c+u, \, b=c+v \, (u,\, v \geq 0)\)

Nếu mình không nhìn nhầm, sau khi rút gọn, nhóm lại theo biến c, bạn nhận được một cái gì đó gọi là hiển nhiên haha

Chúc may mắn, mình mới rút gọn thử thì thấy có vẻ hiển nhiên thật :))