2. a) \(\left\{{}\begin{matrix}x,y,z>1\\x+y+z=xyz\end{matrix}\right.\) Tìm min \(P=\frac{x-1}{y^2}+\frac{y-1}{z^2}+\frac{z-1}{x^2}\)
b) \(a,b,c>0.Cmr:\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
c) \(\left\{{}\begin{matrix}x,y,z\ge0\\x^2+y^2+z^2=2\end{matrix}\right.\) Tìm max \(P=\frac{x^2}{x^2+yz+x+1}+\frac{y+z}{x+y+z+1}-\frac{1+yz}{9}\)
d) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). Cmr: \(\frac{a}{ab+3c}+\frac{b}{bc+3a}+\frac{c}{ca+3b}\ge\frac{3}{4}\)
\(A=\frac{a}{ab+c\left(a+b+c\right)}+\frac{b}{bc+a\left(a+b+c\right)}+\frac{c}{ca+b\left(a+b+c\right)}\)
\(=\frac{a}{\left(b+c\right)\left(a+c\right)}+\frac{b}{\left(a+b\right)\left(a+c\right)}+\frac{c}{\left(a+b\right)\left(c+b\right)}\)
Áp dụng bđt AM-GM ta có
\(A=\frac{a\left(a+b\right)+b\left(b+c\right)+c\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\ge27.\frac{a^2+b^2+c^2+ab+bc+ca}{8\left(a+b+c\right)^3}\)\(=\frac{a^2+b^2+c^2+ab+bc+ca}{8}\)
\(=\frac{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}{8}\)\(\ge\frac{9-\frac{\left(a+b+c\right)^2}{3}}{8}=\frac{9-3}{8}=\frac{3}{4}\)
Dấu "=" xảy ra khi a=b=c=1
b) Mạnh hơn, và dễ dàng hơn là:
\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{\sum c\left(a-b\right)^2}{abc}\)
Nó tương đương với: \({\frac {{a}^{2}}{{b}^{2}}}+{\frac {{b}^{2}}{{c}^{2}}}+{\frac {{c}^{2} }{{a}^{2}}}+3-2\,{\frac {a}{b}}-2\,{\frac {b}{c}}-2\,{\frac {c}{a}} \geqq 0\)
Là hiển nhiên vì \(\frac{a^2}{b^2}+1\ge\frac{2a}{b}\)
Đơn giản:))
a) Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow ab+bc+ca=1;0< a,b,c< 1\)
Cần chứng minh: \(P=\sum\frac{\frac{1}{a}-1}{\frac{1}{b^2}}=\sum\frac{b^2-ab^2}{a}\ge\sqrt{3}-1\)
Hay là: \(\left(\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\right)\sqrt{ab+bc+ca}\ge\left(\sqrt{3}-1\right)\left(ab+bc+ca\right)+a^2+b^2+c^2\)
\(\Leftrightarrow\left(\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\right)^2\left(ab+bc+ca\right)\ge\) \(\Big[ (\sqrt{3} -1) (ab+bc+ca) +a^2+b^2+c^2\Big]^2\)
Giả sử \(c=\min\{a,b,c\}\) và đặt \(a=c+u, \, b=c+v \, (u,\, v \geq 0)\)
Nếu mình không nhìn nhầm, sau khi rút gọn, nhóm lại theo biến c, bạn nhận được một cái gì đó gọi là hiển nhiên
Chúc may mắn, mình mới rút gọn thử thì thấy có vẻ hiển nhiên thật :))
a/ Một cách đơn giản hơn:
\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
\(P=\frac{x-\frac{1}{2}+y-\frac{1}{2}}{y^2}+\frac{y-\frac{1}{2}+z-\frac{1}{2}}{z^2}+\frac{z-\frac{1}{2}+x-\frac{1}{2}}{x^2}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(P=\left(x-\frac{1}{2}\right)\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(y-\frac{1}{2}\right)\left(\frac{1}{y^2}+\frac{1}{z^2}\right)+\left(z-\frac{1}{2}\right)\left(\frac{1}{x^2}+\frac{1}{z^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(P\ge\frac{2}{xy}\left(x-\frac{1}{2}\right)+\frac{2}{yz}\left(y-\frac{1}{2}\right)+\frac{2}{zx}\left(z-\frac{1}{2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(P\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-1\)
\(P\ge\sqrt{3\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}-1=\sqrt{3}-1\)
\(P_{min}=\sqrt{3}-1\) khi \(x=y=z=\sqrt{3}\)
@Akai Haruma, @Nguyễn Việt Lâm, @tth_new
giúp em với ạ ! em cảm ơn nhiều!
b/ \(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(ab+bc+ca\right)\ge\left(a+b+c\right)^2\) (1)
\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\ge\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\right)^2\)
\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(\frac{a+b+c}{abc}\right)\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\) (2)
(1);(2) \(\Rightarrow\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\left(\frac{ab+bc+ca}{abc}\right)\left(a+b+c\right)\ge\left(a+b+c\right)^2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
c/ \(2+2yz=x^2+y^2+z^2+2yz=x^2+\left(y+z\right)^2\ge2x\left(y+z\right)\)
\(\Rightarrow x\left(y+z\right)\le1+yz\)
Mặt khác cũng có: \(2+2yz=x^2+\left(y+z\right)^2\ge\frac{1}{2}\left(x+y+z\right)^2\Rightarrow1+yz\ge\frac{\left(x+y+z\right)^2}{4}\)
\(P\le\frac{x^2}{x^2+x+x\left(y+z\right)}+\frac{y+z}{x+y+z+1}-\frac{\left(x+y+z\right)^2}{36}\)
\(P\le\frac{x+y+z}{x+y+z+1}-\frac{\left(x+y+z\right)^2}{36}\)
Đặt \(x+y+z=t\Rightarrow P\le\frac{t}{t+1}-\frac{t^2}{36}=\frac{36t-t^3-t^2}{36\left(t+1\right)}\)
\(P\le\frac{-t^3-t^2+16t-20+20\left(t+1\right)}{36\left(t+1\right)}=\frac{-\left(t-2\right)^2\left(t+5\right)}{36\left(t+1\right)}+\frac{5}{9}\le\frac{5}{9}\)
\(\Rightarrow P_{max}=\frac{5}{9}\) khi \(t=2\) hay \(\left(x;y;z\right)=\left(1;1;0\right);\left(1;0;1\right)\)
d/ \(VT=\frac{a}{\left(a+c\right)\left(b+c\right)}+\frac{b}{\left(a+b\right)\left(a+c\right)}+\frac{c}{\left(a+b\right)\left(b+c\right)}\)
\(VT=\frac{a\left(a+b\right)+b\left(b+c\right)+c\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{a^2+b^2+c^2+ab+bc+ca}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(VT\ge\frac{\frac{1}{2}\left(a+b+c\right)^2+\frac{1}{2}\left(a^2+b^2+c^2\right)}{\left(\frac{2a+2b+2c}{3}\right)^3}\ge\frac{\frac{1}{2}\left(a+b+c\right)^2+\frac{1}{6}\left(a+b+c\right)^2}{\frac{8}{27}\left(a+b+c\right)^3}=\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cách 3 cho câu b, khá độc đáo:
Đặt \(\left(a;b;c\right)\rightarrow\left(a^2;b^2;c^2\right)\) (nên đặt x2.. nhưng mình đặt vậy để sẽ nói sau)
Đưa bất đẳng thức về: \(\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)^2\ge\left(a^2+b^2+c^2\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
Áp dụng bổ đề với \(x=\frac{a}{b};y=\frac{b}{c};z=\frac{c}{a}\)
Có: \(VT\ge\left[\frac{3}{2}\sum\left(x+\frac{1}{x}\right)-6\right]^2\) (viết x, y, z lại như bổ đề trong link cho dễ xem :v)
\(=\left[\frac{3}{2}\left(\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c}\right)-6\right]^2\ge VP\)
Hoán vị trở thành đối xứng, đơn giản chưa:v