Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 7 2019 lúc 16:50

Với a = 1; b = -1, hàm số trở thành: y = x 3 + x 2  – x + 1.

- Tập xác định : D = R.

- Sự biến thiên :

Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

+ Bảng biến thiên :

Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

Kết luận :

Hàm số đồng biến trên (-∞ ; -1) và Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

Hàm số nghịch biến trên Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

Hàm số đạt cực đại tại x = -1 ; y = 2.

Hàm số đạt cực tiểu tại Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị :

Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 1 2018 lúc 1:54

* Hàm số y = ax + b

Trường hợp a > 0

1. TXĐ: D = R.

2. Sự biến thiên.

y’ = a > 0. Vậy hàm số đồng biến trên toàn bộ R.

QUẢNG CÁO

Giải bài tập Toán 12 | Giải Toán lớp 12

QUẢNG CÁO

Trường hợp a < 0

1. TXĐ: D = R.

2. Sự biến thiên.

y’ = a < 0. Vậy hàm số đồng biến trên toàn bộ R.

Giải bài tập Toán 12 | Giải Toán lớp 12

* Hàm số y = ax2 + bx + c

Trường hợp a > 0

1. TXĐ: D = R.

2. Sự biến thiên.

y’ = 2ax + b. Cho y’ = 0 thì x = - b/2a.

Giải bài tập Toán 12 | Giải Toán lớp 12

Hàm số nghịch biến trên khoảng (-∞,- b/2a).

Hàm số đồng biến trên khoảng [- b/2a, +∞].

Hàm số đạt cực tiểu bằng - Δ/4a tại x = - b/2a .

3. Vẽ đồ thị:

Giải bài tập Toán 12 | Giải Toán lớp 12

Trường hợp a < 0

1. TXĐ: D = R.

2. Sự biến thiên.

y’ = 2ax + b. Cho y’ = 0 thì x = - b/2a.

Giải bài tập Toán 12 | Giải Toán lớp 12

Hàm số đồng biến trên khoảng (-∞,- b/2a).

Hàm số nghịch biến trên khoảng [- b/2a, +∞].

Hàm số đạt cực đại bằng - Δ/4a tại x = - b/2a .

3. Vẽ đồ thị:

Giải bài tập Toán 12 | Giải Toán lớp 12

Lê Thanh Hương
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 2 2023 lúc 23:31

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-6}{2\cdot4}=\dfrac{-6}{8}=\dfrac{-3}{4}\\y=-\dfrac{6^2-4\cdot4\cdot\left(-5\right)}{4\cdot4}=-\dfrac{29}{4}\end{matrix}\right.\)

Bảng biến thiên là:

x-\(\infty\)                 -3/4                             +\(\infty\)
y-\(\infty\)                 -29/4                           +\(\infty\)

 loading...

b: Hàm số đồng biến khi x>-3/4; nghịch biến khi x<-3/4

GTNN của hàm số là y=-29/4 khi x=-3/4

Lê Thanh Hương
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 2 2023 lúc 23:25

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-10}{2\cdot\left(-3\right)}=\dfrac{10}{6}=\dfrac{5}{3}\\y=-\dfrac{10^2-4\cdot\left(-3\right)\cdot\left(-4\right)}{4\cdot\left(-3\right)}=\dfrac{13}{3}\end{matrix}\right.\)

Bảng biến thiên:

x-\(\infty\)                    5/3                          +\(\infty\)
y+\(\infty\)                    13/3                       -\(\infty\)

loading...

b: Hàm số đồng biến khi x<5/3; nghịch biến khi x>5/3

Giá trị nhỏ nhất là y=13/3 khi x=5/3

Nguyễn Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2021 lúc 20:22

a: Thay x=3 và y=0 vào (1), ta được:

\(6-3m=0\)

hay m=2

Nguyễn Thị Lan Anh
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 12 2022 lúc 20:15

a.

Do (P) đi qua F, thay tọa độ F vào phương trình (P) ta được:

\(a.0^2+b.0+c=5\Rightarrow c=5\)

Do (P) có đỉnh \(I\left(3;-4\right)\)

\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{b}{2a}=3\\a.3^2+b.3+c=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=-6a\\9a+3b+5=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-6a\\9a+3.\left(-6a\right)=-9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-6\end{matrix}\right.\)

hay pt (P) có dạng: \(y=x^2-6x+5\)

b. Em tự giải

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 6 2019 lúc 13:13

Khi a = 3/2 thì

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' = 0 ⇔ x 2  + 6x + 5 = 0 ⇔ x = -1 hoặc x = -5.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị như trên Hình 1.18

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên từ đồ thị (C) ta suy ngay ra đồ thị của hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

như trên Hình 1.19

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 7 2018 lúc 14:31

a) f(x) = 2x.(x+2) - (x+2)(x+1) = 2x2 + 4x - (x2 + 3x + 2) = x2 + x - 2

Tam thức x2 + x – 2 có hai nghiệm x1 = -2 và x2 = 1, hệ số a = 1 > 0.

Vậy:

+ f(x) > 0 nếu x > x2 = 1 hoặc x < x1 = -2, hay x ∈ (-∞; -2) ∪ (1; + ∞)

+ f(x) < 0 nếu x1 < x < x2 hay x ∈ (-2; 1)

+ f(x) = 0 nếu x = -2 hoặc x = 1.

b)

* Hàm số y = 2x(x+2) = 2x2 + 4x có đồ thị (C1) là parabol có:

+ Tập xác định: D = R

+ Đỉnh I1( -1; -2)

+ Trục đối xứng: x = -1

+ Giao điểm với trục tung tại gốc tọa độ.

+ Giao điểm với trục hoành tại O(0; 0) và M(-2; 0).

+ Bảng biến thiên:

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

* Hàm số y = (x + 2)(x+1) = x2 + 3x + 2 có đồ thị (C2) là parabol có:

+ Tập xác định D = R.

+ Đỉnh Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

+ Trục đối xứng: x = -3/2

+ Giao với trục tung tại D(0; 2)

+ Giao với trục hoành tại M(-2; 0) và E(-1; 0)

+ Bảng biến thiên

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

* Đồ thị:

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

* Tìm tọa độ giao điểm:

Cách 1: Dựa vào đồ thị hàm số:

Nhìn vào đồ thị thấy (C1) cắt (C2) tại A(1; 6) và B ≡ M(-2; 0)

Cách 2: Tính:

Hoành độ giao điểm của (C1) và (C2) là nghiệm của phương trình:

2x(x + 2) = (x + 2)(x + 1)

⇔ (x + 2).2x – (x + 2)(x + 1) = 0

⇔ (x + 2).(2x – x – 1) = 0

⇔ (x + 2).(x – 1) = 0

⇔ x = -2 hoặc x = 1.

+ x = -2 ⇒ y = 0. Ta có giao điểm B(-2; 0)

+ x = 1 ⇒ y = 6. Ta có giao điểm A(1; 6).

c)

+ Đồ thị hàm số y = ax2 + bx + c đi qua điểm A(1; 6) và B(-2; 0)

⇔ tọa độ A và B thỏa mãn phương trình y = ax2 + bx + c

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

+ Ta có bảng biến thiên của hàm số y = ax2 + bx + c:

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

Nhận thấy y đạt giá trị lớn nhất bằng 8

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

Thay b = 2 + a và c = 4 – 2a vào biểu thức 4ac – b2 = 32a ta được:

4.a.(4 – 2a) – (2 + a)2 = 32a

⇔ 16a – 8a2 – (a2 + 4a + 4) = 32a

⇔ 16a– 8a2 – a2 – 4a - 4 – 32a = 0

⇔ -9a2 - 20a - 4 = 0

⇔ a = -2 hoặc a = -2/9.

Nếu a = -2 ⇒ b = 0, c = 8, hàm số y = -2x2 + 8

Nếu a = -2/9 ⇒ b = 16/9, c = 40/9, hàm số Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

Dương Thị Thu Hiền
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 10 2021 lúc 23:02

Bài 2: 

Ta có: \(\dfrac{-\text{Δ}}{4a}=-3\)

\(\Leftrightarrow-\text{Δ}=-12a\)

\(\Leftrightarrow b^2-4a=12a\)

\(\Leftrightarrow b^2-16a=0\left(1\right)\)

Thay x=-1 và y=6 vào (P), ta được:

\(a\cdot\left(-1\right)^2+b\left(-1\right)+1=6\)

\(\Leftrightarrow a-b=5\)

\(\Leftrightarrow a=b+5\)(2)

Thay (2) vào (1), ta được:

\(b^2-16\left(b+5\right)=0\)

\(\Leftrightarrow b^2-16b+64-144=0\)

\(\Leftrightarrow\left(b-8\right)^2=144\)

\(\Leftrightarrow\left[{}\begin{matrix}b=20\\b=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=25\\a=1\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 10 2017 lúc 13:28

Ta có thể viết

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Từ đó có bảng biến thiên và đồ thị của hàm số

    y = |2x - 3| (h.32)

Giải sách bài tập Toán 10 | Giải sbt Toán 10