F(x) là nguyên hàm của f(x) trên khoảng (a;b) . Chọn đáp án đúng.
A. ∫f(x)dx = F(x)
B. ∫F(x)dx = F(x) + C
C. ∫f(x)dx = F(x) + C
D. ∫F(x)dx = f(x)
Cho hàm số f(x) liên tục trên khoảng (-2; 3). Gọi F(x) là một nguyên hàm của f(x) trên khoảng (-2; 3). Tính , biết F(-1) = 1, F(2) = 4.
A. I = 6.
B. I = 10.
C. I = 3.
D. I = 9.
Biết rằng xe x là một nguyên hàm của f(-x) trên khoảng - ∞ ; + ∞ . Gọi F(x) là một nguyên hàm của f ' ( x ) e x thỏa mãn F(0)= 1, giá trị của F(-1) bằng
A. .
B. .
C. .
D. .
Chọn A
Vì là một nguyên hàm của trên khoảng
, .
Do đó
,
, .
Nên .
Bởi vậy .
Từ đó ; .
.
Biết rằng x e x là một nguyên hàm của hàm số f(-x) trên khoảng - ∞ , + ∞ . Gọi F(x) là một nguyên hàm của f ' x e x thỏa mãn F(0) =1, giá trị của F(-1) bằng:
A. 7 2
B. 5 - e 2
C. 7 - e 2
D. 5 2
Đáp án A
Phương pháp:
+) x e x là một nguyên hàm của hàm số nên x e x ' = f ( - x )
+) Từ f ( - x ) ⇒ f ( x )
+) F(x) là một nguyên hàm của f ' x e x ⇒ F ( x ) = ∫ f ' ( x ) e x d x
+) Tính F(x), từ đó tính F(-1)
Cách giải:
Vì x e x là một nguyên hàm của hàm số f ( - x ) nên x e x ' = f ( - x )
Họ các nguyên hàm F(x) của hàm số f(x) = x.lnx trên khoảng 0 ; + ∞ là
Cho hàm số F(x) là một nguyên hàm của hàm số f ( x ) = 2 cos x - 1 sin 2 x trên khoảng 0 ; π . Biết rằng giá trị lớn nhất của F(x) trên khoảng 0 ; π là 3 . Chọn mệnh đề đúng trong các mệnh đề sau?
Giả sử F(x) là một họ nguyên hàm của hàm số f ( x ) = sin x x trên khoảng 0 ; + ∞ . Tính tích phân I = ∫ 1 3 sin 2 x x d x
A. F(3) – F(1).
B. F(6) – F(2).
C. F(4) – F(2).
D. F(6) – F(4).
Cho hàm số F(x) là một nguyên hàm của hàm số f x = 2 cos x − 1 sin 2 x trên khoảng 0 ; π Biết rằng giá trị lớn nhất của F(x) trên khoảng 0 ; π là 3 . Chọn mệnh đề đúng trong các mệnh đề sau?
A. F π 6 = 3 3 − 4
B. F 2 π 3 = 3 2
C. F π 3 = − 3
D. F 5 π 6 = 3 − 3
Giả sử F(x) là một nguyên hàm của hàm số f ( x ) = 1 3 x + 1 trên khoảng - ∞ ; - 1 3 . Mệnh đề nào sau đây đúng?
Biết F(x) là nguyên hàm của hàm số f x = x cos x - sin x x 2 Hỏi đồ thị của hàm số y=F(x) có bao nhiêu điểm cực trị trên khoảng (0;2018π)?
A. 2019
B. 1
C. 2017
D. 2018