Hàm số f(x)có đạo hàm f ' (x) trên ℝ Hình vẽ bên là đồ thị của hàm số f ' (x) trên ℝ Hỏi hàm số y = f x + 2018 có bao nhiêu điểm cực trị ?
A. 5
B. 3
C. 2
D. 4
Cho hàm số f(x) có đạo hàm f'(x) trên R. Hình vẽ bên là đồ thị của hàm số f'(x) trên R.
Hỏi hàm số y = f x + 2018 có bao nhiêu điểm cực trị?
A. 4
B. 5
C. 7
D. 3
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Đồ thị hàm số y=f’(x) như hình bên. Số điểm cực trị của hàm số y=f(x-2017)-2018x+2019 là:
A. 3
B. 1
C. 4
D. 2
Cho hai hàm đa thức y = f(x), y = g(x) có đồ thị là hai đường cong ở hình vẽ. Biết rằng đồ thị hàm số y = f(x) có đúng một điểm cực trị là A, đồ thị hàm số y = g(x) có đúng một điểm cực trị là B và A B = 7 4 . Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (-5;5) để hàm số y = f ( x ) - g ( x ) + m có đúng 5 điểm cực trị?
A. 1
B. 3
C. 4
D. 6
Hàm số f(x) có đạo hàm f '(x) trên khoảng K. Hình vẽ bên là đồ thị của hàm số trên khoảng K. Hỏi hàm số f(x) có bao nhiêu điểm cực trị?
A. 0
B. 4
C. 3
D. 1
Cho hàm số y = f(x) có đạo hàm liên tục trên R. Đồ thị hàm số y = f ' x như hình vẽ. Số điểm cực trị của hàm số y = f ( x - 2017 ) - 2018 x + 2019 là
A. 1
B. 3
C. 2
D. 0
Cho hàm số y=f(x) liên tục trên R. Hàm số y=f'(x) có đồ thị như hình bên. Hỏi hàm số
y
=
f
(
x
)
+
2017
-
2019
x
2018
có bao nhiêu điểm cực trị
A. 4
B. 3
C. 2
D. 1
Cho hàm số y =f(x) có đạo hàm f’(x) trên khoảng (-∞;+∞). Đồ thị của hàm số y =f(x) như hình vẽ. Đồ thị của hàm số y = f x 2 có bao nhiêu điểm cực đại, điểm cực tiểu?
A. 1 điểm cực đại, 3 điểm cực tiểu.
B. 2 điểm cực đại, 3 điểm cực tiểu.
C. 2 điểm cực đại, 2 điểm cực tiểu.
D. 2 điểm cực tiểu, 3 điểm cực đại.
Cho hàm số y = f(x) liên tục trên R. Biết đồ thị hàm số y = f’(x) được cho bởi hình vẽ bên, xét hàm số y = g x = f x - x 2 2 . Hỏi trong các mệnh đề sau có bao nhiêu mệnh đề đúng?
(I) Số điểm cực tiểu của hàm số g(x) là 2.
(II) Hàm số g(x) đồng biến trên khoảng (-1;2).
(III) Giá trị nhỏ nhất của hàm số là g(-1).
(IV) Cực đại của hàm số g(x) là 0.
A. 0
B. 1
C. 2
D. 3