Cho tam giác abc vuông tại a Biết ab=3cm; ac=4cm. AD là đường phân giác của a a) Tính bc,db,dc,db/dc b) kẻ ah vuông góc với bc. C/m tam giác AHB đồng dạng với CHA. Giúp mik với mai mik thi rùi :(((
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB= 9cm, BC= 15cm. Tính BH, HC
b) Biết BH= 1cm, HC= 3cm. Tính AB, AC
c) Biết AB= 6cm, AC= 8cm. Tính AH, BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB= 3cm, BH= 2,4cm
a) Tính BC, AC, AH, HC b) Tính tỉ số lượng giác của góc B
Bài 3: Cho tam giác ABC có BC= 9cm, góc B= 60 độ, góc C= 40 độ, đường cao AH. Tính AH, AB, AC
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
1.Cho tam giác ABC vuông tại A , đường phân giác BE , biết EC=3cm ,BC=6cm . Tính độ dài các đoạn thẳng AB, AC .
2.Cho tam giác ABC vuông tại A , đường cao AH . Biết AB:AC=3:7 , AH=42cm.Tính độ dài BH , CH
3.Cho tam giác ABC vuông tại A , đường cao AH . Biết BH:CH=9:16 , AH-48cm.Tính độ dài các cạnh góc vuông của tam giác ABC
4.Cho tam giác ABC vuông tại A ,phân giác AD , đường cao AH. Biết AB=21cm,AC=28cm .Tính HD
1) Cho tam giác ABC vuông tại A có góc B = 60độ, AC = 3cm. Tính BC, AB
2) Cho tam giác ABC vuông tại A có BC = 10cm, góc C = 3cm. Tính góc B, AB, AC
3) Cho tam giác ABC vuông tại A có AB = 4cm, góc B = 50 độ. Tính BC, góc C, AC
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Câu 6: Cho △ABC vuông tại A, biết AB=3cm, BC=5cm. Giải tam giác vuông đó
\(\text{Pytago: }AC=\sqrt{BC^2-AB^2}=4\left(cm\right)\\ \sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\sin53^0\\ \Rightarrow\widehat{B}\approx53^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx37^0\)
Vì tam giác ABC vg tại A
=> BC2=BA2+AC2
=> 25=9+AC2
=> AC2=25-9
=> AC2=16
=> AC=4
cho tam giác abc vuông tại a biết độ dài hai cạnh góc vuông là AB=3cm,AC=4cm tính chu vi của tam giác ABC
vì tam giác abc vuông tại a, ta có
bc2 = ab2 + ac2
bc2 = 32 + 42
bc = căn của 25
bc = 5
chu vi tam giác abc là:
3 + 4 + 5 = 12(cm)
câu 1:Cho tam giác ABC,vuông tại A,đường cáo AH(H thuộc BC).Biết AB=12CM,Ac=5cm.tính BH,CH
Câu 2:cho tam giác ABC vuông tại A,đường cáo AH(H thuộc BC).Biết AB=18cm,BH=6cm.tính đô dài các cạnh AB,AC
Câu 3:cho tam giac abc vuông tại a,biết ab-3cm,ac=4cm,
a.tinh bc
b:kẻ đường cao ah,tính bh
Câu 4:cho tam giác ABC Vuông tại A,biết ab=4cm,đường cao ah=2cm.Tính các góc và các cạnh còn lại của tam giác
Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o
Cho tam giác ABC vuông tại A , đường cao AH . Chứng minh rằng 1/AH^2=1/AB^2+1/ac^2
Cho tam giác ABC vuông tại A biết AB =3cm AC=4cm tính AH HB
xét tam giác ABC vuông tại A đường cao AH , áp dụng đinh lí Pytago ta có
\(AB^2+AC^2=BC^2< =>BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\)
ta có: \(AH.BC=AB.AC\)(hệ thức lượng tam giác vuông)
=>
\(AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=\dfrac{12}{5}=2,4cm\)
Cho tam giác ABC vuông tại A . Biết AB=3cm,AC=4cm.Tìm AC
Cho tam giác ABC vuông tại A. Gọi G là trọng tâm tâm giác ABC Biết AB=3cm, AC=4cm. TÍNH Ag
Hình em tự vẽ ra nhé.
Áp dụng đl pytago vào tam giác vuông ABC có:
AB^2 + AC^2 = BC^2
-- > BC = 5 (cm)
Vì tam giác ABC vuông tại A, AM là đường trung tuyến ứng với cạnh huyền BC nên ta có:
\(AM=\dfrac{1}{2}BC=\dfrac{1}{2}.5=2,5\left(cm\right)\)
Vì G là trọng tâm tâm giác ABC, ta lại có:
\(AG=\dfrac{2}{3}AM=\dfrac{2}{3}.2,5=\dfrac{5}{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A biết AB=3cm, AC=4cm, Gọi AH là đường cao tính S tam giác AHC
xét tam giác ABC vuông tại A . áp dụng Pytago
=>\(BC=\sqrt{AB^2+AC^2}\)
\(BC=\sqrt{3^2+4^2}=5cm\)
có \(AC^2=CH.BC\)(hệ thức lượng)
\(=>CH=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=3,2cm\)
có tam giác AHC vuông tại H
=>\(AH=\sqrt{AC^2-CH^2}=\sqrt{4^2-3,2^2}=2,4cm\)
=>\(S\left(\Delta AHC\right)=\dfrac{AH.HC}{2}=\dfrac{ }{ }\)\(\dfrac{2,4.3,2}{2}=3,84cm^2\)