Cho a,b,c là số thực và a+b+c=0;abc=-15.Tìm giá trị của a2(b+c)+b2(c+a)+c2(a+b)
giúp mik với,mik cần gấp
Cho a,b,c là 3 số thực khác 0, thỏa mãn a+b-c/c = b+c-a/a =c+a-b/b và a+b+c khác 0.
cho các số thực a, b , c thỏa mãn a+b+c >0; ab+bc+ca>0 và abc>0, CMR a,b,c là các số dương
Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).Vậy điều giả sử trên là sai,
a,b,c là 3 số dương.
Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).
Vậy điều giả sử trên là sai,
Do đó a,b,c là 3 số dương.
cho a b c là các số thực thỏa mãn a,b ≥0 0≤ c ≤ 1 và a^2 +b^2 +c^2 =3
Tìm min max P= ab + bc +ca +3(a+b+c)
Cho a,b,c là các số thực khác 0 và 1/c=1/2.(1/a+1/b) . Chứng minh a/b=a-c/c-b
\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)
\(\frac{2}{c}=\frac{a}{ab}+\frac{b}{ab}\)
\(\frac{2}{c}=\frac{a+b}{ab}\)
\(2ab=\left(a+b\right).c\)
\(ab+ab=ac+bc\)
\(ab-bc=ac-ab\)
\(b.\left(a-c\right)=a.\left(c-b\right)\)
\(\frac{a}{b}=\frac{a-c}{c-b}\)
Cho a,b là số thực thỏa mãn a>0, a/b=c/a và a+b+c = a.b.c Tìm b và c để a đạt giá trị lớn nhất'
cho phương trình ax^2+bx+c=0 với các số a,b,c là các số thực nghiệm khác 0 và thỏa mãn điều kiện a+b+2c=0. Chứng minh rằng phương trình trên luôn có nghiệm trên tập số thực
Đặt \(f\left(x\right)=ax^2+bx+c\).
\(f\left(0\right)=c;f\left(1\right)=a+b+c\)
Do \(a+b+2c=0\) nên c và \(a+b+c\) trái dấu. Suy ra f(0)f(1) < 0 nên f(x) = 0 luôn có ít nhất 1 nghiệm tren (0; 1).
Cho a,b,c là 3 số thực khác 0, thỏa mãn a+b-c/c = b+c-a/a =c+a-b/b và a+b+c khác 0.
hãy tính giá trị biểu thức B = (1+b/a). (1+a/c). (1+c/b)
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
+)Nếu a+b+c=0\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\Rightarrow B=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=\frac{-\left(abc\right)}{abc}=-1\)
Nếu \(a+b+ c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow a+b=2c\)
\(b+ c=2a\)
\(c+a=2b\)
\(\Rightarrow B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)
a+b-c/c=b+c-a/a=c+a-b/b
=>a+b-1=b+c-1=c+a-1
=>a+b=b+c=c+a
Vì a+b=b+c
=>a=b+c-b
=>a=c
Vì b+c=c+a
=>b=c+a-c
=>b=a
Mà a=c
=>a=b=c
Ta có:B=(1+b/a).(1+a/c).(1+c/b)
=>B=(1+b/b).(1+a/a).(1+c/c)
=>B=(1+1).(1+1).(1+1)
=>B=2.2.2
=>B=8
Vậy B=8
Hok tốt!
Cho a, b, c là các số thực thỏa mãn a > 0, b > 0 và \(f\left(x\right)=ax^2+bx+c\ge0\). . Tìm Min \(Q=\dfrac{4a+c}{b}\)
Lời giải:Vì $f(x)\geq 0$ nên $\Delta=b^2-4ac\leq 0$
$\Leftrightarrow 4ac\geq b^2$
Áp dụng BĐT AM-GM:
$Q=\frac{4a+c}{b}\geq \frac{4\sqrt{ac}}{b}\geq \frac{4\sqrt{b^2}}{b}=\frac{4b}{b}=4$
Vậy $Q_{\min}=4$
Cho a;b;c là ba số thực dương, a > 1 và thỏa mãn log 2 a b c + log a b 3 c 3 + b c 4 2 + 4 + 4 - c 2 = 0 . Số bộ a;b;c thỏa mãn điều kiện đã cho là:
A. 0
B. 1
C. 2
D. vô số
Ta có:
Dấu “=” xảy ra khi và chỉ khi
Vậy số bộ a,b,c thỏa mãn điều kiện đã cho là 1.
Chọn B.
x là số thực và a,b,c là các số thực đôi một khác nhau và khác 0 thỏa mãn \(x=a+\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a}\)Tính xabc