Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Lan Anh
Xem chi tiết
Trần Quốc Đạt
7 tháng 1 2017 lúc 22:22

Vẫn có \(AB+BC+CA=0\), làm tương tự câu a (à giờ mới nhận ra có 2 chữ A, B và C trùng nhau).

Nên anh kí hiệu biểu thức là \(b\) nha.

\(\frac{A^2}{A^2+2BC}=\frac{A^2}{A^2+BC-CA-AB}=-\frac{A^2}{\left(A-B\right)\left(C-A\right)}\)

Quy đồng mẫu được \(b=-\left[\frac{A^2\left(B-C\right)+B^2\left(C-A\right)+C^2\left(A-B\right)}{\left(A-B\right)\left(B-C\right)\left(C-A\right)}\right]\).

Tự làm tiếp nha em, lâu rồi anh không làm cái này nên cũng lười.

Nguyễn Thị Lan Anh
Xem chi tiết
Trần Quốc Đạt
7 tháng 1 2017 lúc 22:19

(\(AB+BC+CA=0\), đúng không nhỉ?)

Ta có \(\frac{1}{A^2+2BC}=\frac{1}{A^2+BC-AB-AC}=\frac{-1}{\left(A-B\right)\left(C-A\right)}\).

Làm tương tự rồi quy đồng mẫu được \(A=0\).

Bùi Thị Vân
17 tháng 10 2017 lúc 9:30

Từ \(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}=0\left(ABC\ne0\right)\), ta có:
\(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}=\frac{BC}{ABC}+\frac{AC}{ABC}+\frac{AB}{ABC}=\frac{BC+AC+AB}{ABC}=0\).
Suy ra \(BC+AC+AB=0\).
Từ đó ta có:
\(\frac{1}{A^2+2BC}=\frac{1}{A^2+BC+BC}=\frac{1}{A^2+BC-AC-AB}\)\(=\frac{1}{A\left(A-C\right)-B\left(A-C\right)}=\frac{1}{\left(A-B\right)\left(A-C\right)}\).Tương tự \(\frac{1}{B^2+2CA}=\frac{1}{\left(A-B\right)\left(C-B\right)}\)\(\frac{1}{C^2+2AB}=\frac{1}{\left(C-A\right)\left(C-B\right)}\).
Do đó:
\(\frac{1}{A^2+2BC}+\frac{1}{B^2+2CA}+\frac{1}{C^2+2AB}=\frac{1}{\left(A-B\right)\left(A-C\right)}+\)\(\frac{1}{\left(A-B\right)\left(C-B\right)}+\frac{1}{\left(C-A\right)\left(C-B\right)}\)
\(=\frac{B-C-\left(A-C\right)+A-B}{\left(A-B\right)\left(A-C\right)\left(B-C\right)}=\frac{0}{\left(A-B\right)\left(A-C\right)\left(B-C\right)}=0\).
 

Nguyễn Thị Minh Châu
Xem chi tiết
Akai Haruma
2 tháng 12 2019 lúc 19:53

Bài 1:

\(A=\frac{1}{a-b}+\frac{1}{a+b}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{a+b+a-b}{(a-b)(a+b)}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}=\frac{2a}{a^2-b^2}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=(2a).\frac{a^2+b^2+a^2-b^2}{(a^2-b^2)(a^2+b^2)}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{4a^3}{a^4-b^4}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=4a^3.\frac{a^4+b^4+a^4-b^4}{(a^4-b^4)(a^4+b^4)}+\frac{8a^7}{a^8+b^8}=\frac{8a^7}{a^8-b^8}+\frac{8a^7}{a^8+b^8}=8a^7.\frac{a^8+b^8+a^8-b^8}{(a^8-b^8)(a^8+b^8)}\)

\(=\frac{16a^{15}}{a^{16}-b^{16}}\)

--------------

\(B=\frac{1}{a(a+1)}+\frac{1}{(a+1)(a+2)}+\frac{1}{(a+2)(a+3)}=\frac{(a+1)-a}{a(a+1)}+\frac{(a+2)-(a+1)}{(a+1)(a+2)}+\frac{(a+3)-(a+2)}{(a+2)(a+3)}\)

\(=\frac{1}{a}-\frac{1}{a+1}+\frac{1}{a+1}-\frac{1}{a+2}+\frac{1}{a+2}-\frac{1}{a+3}\)

\(=\frac{1}{a}-\frac{1}{a+3}=\frac{3}{a(a+3)}\)

Khách vãng lai đã xóa
Akai Haruma
2 tháng 12 2019 lúc 19:56

Bài 2:

Bạn tham khảo lời giải tương tự tại link sau:

Câu hỏi của Law Trafargal - Toán lớp 8 | Học trực tuyến

Khách vãng lai đã xóa
Đức Lộc
Xem chi tiết
Nguyễn Hoàng Anh Phong
15 tháng 1 2019 lúc 20:20

ta có: a + b + c = 0 => a+b = - c => a2 + 2ab + b2 = c2 => a2 + b2 - c2 = - 2ab

tương tự như trên, ta có: b2 + c2 - a2 = -2bc; c2 + a2 - b2 = -2ac

thay vào A, có:

\(A=\frac{1}{-2bc}-\frac{1}{2ca}-\frac{1}{2ab}\)

\(A=-\frac{1}{2}.\left(\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\right)=-\frac{1}{2}.\left(\frac{a+b+c}{abc}\right)=-\frac{1}{2}.\left(\frac{0}{abc}\right)=0\)

KL: A = 0 tại a + b + c = 0

Nguyễn Thị Lan Anh
Xem chi tiết
Trần Quốc Đạt
7 tháng 1 2017 lúc 22:22

\(b+2c=3\), đúng không ta?

Ashshin HTN
17 tháng 9 2018 lúc 21:08

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

Buddy
Xem chi tiết
HT.Phong (9A5)
18 tháng 8 2023 lúc 18:05

a) \(a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{2}}\cdot a^{\dfrac{7}{6}}=a^{\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{7}{6}}=a^2\)

b) \(a^{\dfrac{2}{3}}\cdot a^{\dfrac{1}{4}}:a^{\dfrac{1}{6}}=a^{\dfrac{2}{3}+\dfrac{1}{4}-\dfrac{1}{6}}=a^{\dfrac{3}{4}}\)

c) \(\left(\dfrac{3}{2}a^{-\dfrac{3}{2}}\cdot b^{-\dfrac{1}{2}}\right)\left(-\dfrac{1}{3}a^{\dfrac{1}{2}}b^{\dfrac{2}{3}}\right)=\left(\dfrac{3}{2}\cdot-\dfrac{1}{3}\right)\left(a^{-\dfrac{3}{2}}\cdot a^{\dfrac{1}{2}}\right)\left(b^{-\dfrac{1}{2}}\cdot b^{\dfrac{2}{3}}\right)\)

\(=-\dfrac{1}{2}a^{-1}b^{-\dfrac{1}{3}}\)

Called love
Xem chi tiết
Trà My
27 tháng 5 2017 lúc 10:11

Nhân cả 2 vế với a+b+c 

Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0

dễ rồi nhé

Trà My
27 tháng 5 2017 lúc 10:23

b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được: 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)

=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)

=>Pmax=3/4 <=> x=y=z=1/3

Trà My
27 tháng 5 2017 lúc 10:34

c) Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(P=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+2ab+b^2+2ac+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\)

<=>\(P\ge\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1^2}=9\)

Vậy Pmin=9 <=> a=b=c=1/3

Thanh Thảoo
Xem chi tiết
Hoàng Thị Ánh Phương
26 tháng 2 2020 lúc 17:00

Bài 1

Cho a , b , c > 0 . CM : \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b}{b+c}+\frac{b+c}{a+b}\left(1\right)\)

\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(a+b\right)\left(b+c\right)\le\frac{a\left(a+b\right)\left(b+c\right)}{b}+\frac{b\left(a+b\right)\left(b+c\right)}{c}+\frac{c\left(a+b\right)\left(b+c\right)}{a}\)

\(=\frac{a^2c}{b}+a^2+ab+ac+\frac{b^2\left(a+b\right)}{c}+b^2+ab+c^2+bc+\frac{cb\left(b+c\right)}{a}\)

Mặt khác : \(\left(a+b\right)^2+\left(b+c\right)^2+\left(a+b\right)\left(b+c\right)=a^2+ac+c^2+3b^2+3ab+3bc\)

Do đó ta cần chứng minh :

\(\frac{a^2c}{b}+\frac{b^2\left(a+b\right)}{c}+\frac{cb\left(b+c\right)}{a}\ge2b^2+2bc+ab\left(2\right)\)

\(VT=\frac{a^2c}{b}+\frac{b^2\left(a+b\right)}{c}+\frac{cb\left(b+c\right)}{a}=\frac{1}{2}\left(\frac{a^2c}{b}+\frac{b^3}{c}\right)+\frac{1}{2}\left(\frac{a^2c}{b}+\frac{c^2b}{a}\right)+\frac{1}{2}\left(\frac{b^3}{c}+\frac{c^2b}{a}\right)+b^2\left(\frac{c}{a}+\frac{a}{c}\right)\)

\(\ge ab+\sqrt{ac^3}+\sqrt{\frac{b^4c}{a}}+2b^2\ge ab+2bc+2b^2=VP\)

Dấu " = " xảy ra khi a=b=c

Khách vãng lai đã xóa
Hoàng Thị Ánh Phương
26 tháng 2 2020 lúc 17:11

Bài 2 :

Vì x , y , z > 0 ta có :

Áp dụng BĐT Cô - si đối với 2 số dương \(\frac{x^2}{y+z}\)\(\frac{y+z}{4}\)

ta được :

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=2.\frac{x}{2}=x\left(1\right)\) .

Tương tự ta cũng có :
\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\left(2\right);\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\left(3\right)\)

Cộng theo vế (1) , (2) và (3) ta được :
\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\frac{x+y+z}{2}\ge x+y+z\Rightarrow P\ge\left(x+xy+z\right)-\frac{x+y+z}{2}=1\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)

Vậy \(P=1\Leftrightarrow x=y=z=\frac{2}{3}\)

Khách vãng lai đã xóa
Hoàng Thị Ánh Phương
26 tháng 2 2020 lúc 17:24

Bài 3 :

Theo gt \(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\le1\Rightarrow\frac{b}{1+b}+\frac{c}{1+c}\le1-\frac{a}{1+a}=\frac{1}{a+1}\)

Do b > 0 ; c>0 . Nên theo bất đẳng thức Co - si ta có :
\(\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}>0\Rightarrow\frac{1}{1+a}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}>0\left(1\right)\)

Chứng minh tương tự ta có :

\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}>0\left(2\right)\)

\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}>0\left(3\right)\)

Từ (1) , (2) và (3) ta chứng minh được :

\(\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge8\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\Rightarrow1\ge8abc\Rightarrow abc\le\frac{1}{8}\Rightarrowđpcm\)

Khách vãng lai đã xóa
Thanh Xuân
Xem chi tiết
Hoàng Lê Bảo Ngọc
18 tháng 7 2016 lúc 11:25

18. Ta có : \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)

\(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2xyz\left(\frac{1}{abz}+\frac{1}{xbc}+\frac{1}{acy}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2xyz\left(\frac{ayz+bxz+cxy}{abcxyz}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)

Hoàng Lê Bảo Ngọc
18 tháng 7 2016 lúc 11:38

19. Nhân cả hai vế của đẳng thức giả thiết với \(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\)được 

\(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}=0\)

Ta có ;

 \(\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}=\frac{\left(a+b\right)\left(a-b\right)+\left(b+c\right)\left(b-c\right)+\left(c+a\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)

Hoàng Lê Bảo Ngọc
18 tháng 7 2016 lúc 11:42

17. Xét vế trái ; 

\(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{a}{\left(b-1\right)\left(b^2+b+1\right)}+\frac{b}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\frac{a}{-a\left(b^2+b+1\right)}+\frac{b}{-b\left(a^2+a+1\right)}=\frac{-1}{b^2+b+1}+\frac{-1}{a^2+a+1}\)

\(=\frac{-\left(a^2+a+1+b^2+b+1\right)}{\left(a^2+a+1\right)\left(b^2+b+1\right)}=\frac{-\left[\left(a+b\right)^2-2ab+3\right]}{a^2b^2+ab\left(a+b\right)+a^2+b^2+ab+2}\)\(=\frac{2\left(ab-2\right)}{a^2b^2+\left(a^2+2ab+b^2\right)+2}=\frac{2\left(ab-2\right)}{a^2b^2+3}\)