cho tam giác ABC AB khác AC,tia Ax đi qua trung điểm M của BC.Kẻ BE và CF vuông góc với Ax.
a; chứng minh:BE//CF
b;so sánh BE và FC;CE và BF
c;Tìm đều kiện về tam giác ABC để có BE=CE
cho tam giác ABC(AB €AC)tia Ax đi qua trung điểm M của BC.Kẻ BE và CF vuông góc vớiAx (E thuộc à ,F thuộc Ax)so sánh các độ dài BE vàCF
Xét \(\Delta BEM\) và \(\Delta CFM\) có:
\(\widehat{E}=\widehat{F}=90^o\)
MB = MC (gt)
\(\widehat{BME}=\widehat{CMF}\) (đối đỉnh)
Do đó \(\Delta BEM=\Delta CFM\) (cạnh huyền - góc nhọn)
=> BE = CF (2 cạnh t/ứ)
Xét \(\Delta BEM\)và \(\Delta CFM\)
\(\widehat{E}=\widehat{F}=90^{ }\)độ
\(MB=MC\)( gt )
\(\widehat{BME}=CMF\)( đối đỉnh )
\(\Rightarrow\)\(\Delta BEM=\Delta CFM\)( g - c - g )
\(\Rightarrow\)\(BE=CF\)( 2 cạnh tương ứng bằng nhau )
Lời giải:
Hai tam giác vuông BME và CMF có
⇒ ΔBME = ΔCMF (cạnh huyền – góc nhọn)
⇒ BE = CF (hai cạnh tương ứng).
* Chú ý: Các em có thể suy nghĩ tại sao cần điều kiện AB ≠ AC ???
Cho tam giác ABC (AB khác AC) tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax (E thuộc Ax,F thuộc Ax) so sánh các độ dài BE và CF
xét tam giác vuông BEC có EM là đường trung tuyến ứng với cạnh huyền
suy ra EM = \(\frac{1}{2}\)BC (1)
xét tam giác vuông CFB có FM là đường trung tuyến ứng với cạnh huyền
suy ra FM = \(\frac{1}{2}\)BC (2)
từ (1) và (2) suy ra M là trung điểm EF
mà M là trung điểm của BC
từ 2 điều đó suy ra BECF là hình bình hành
suy ra BE = CF
Cho tam giác ABC . AB > AC . Tia Ax đi qua trung điểm M của BC . Kẻ BE và CF vuông góc với Ax . Chứng minh BE = CF
Xét tam giác CFM và tam giác BEM có:
CFM = BEM = 900 (gt) vậy hai tam giác là 2 tam giác vuông
MB = MC (gt)
góc M1 = góc M2 (đổi đỉnh)
Vậy tam giác CFM = tam giác BEM (cạnh huyền - góc nhọn)
suy ra BE = CF ( hai cạnh tương ứng của 2 tam giác bằng nhau)
Nếu bạn chưa học trường hợp bằng nhau của tam giác thì có thể suy ra góc EBM = góc FCM vì phụ với góc M2 và góc M1 mà góc M1 = M2 vì đối đỉnh. suy ra 2 tam giác bằng nhau theo trường hợp góc - cạnh - góc nhé
Cho tam giác ABC (AB<AC). Tia Ax đi qua trung điểm M của BC.Vẽ BE và CF vuông góc với Ax(E,F thuộc Ax)
Chứng minh : BE=CF
Xét \(\Delta\) vuông BEM và \(\Delta\)vuông CFM ta có :
BM = CM
EMB = CMF ( đối đỉnh )
=> \(\Delta\)BEM = \(\Delta\)CFM ( cạnh huyền - góc nhọn )
=> BE = CF
Cho tam giác ABC AB khác AC, tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax (E,F thuộc Ax).
a) Chứng minh: BE//CP.
b) So sánh BE và FC; CE và BF.
c) Tìm điều kiện về tam giác ABC để có BE = CE.
Cho tam giác ABC(AB≠AC), tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax(E ∈ Ax, F∈Ax ). So sánh độ dài BE và CF
Hai tam giác vuông BME, CMF có:
BM=MC(gt)
=(đối đỉnh)
Nên ∆BME=∆CMF(cạnh huyền- góc nhọn).
Suy ra BE=CF.
Vì tia Ax đi qua trung điểm M của BC => AM là đường trung tuyến của tam giác của tam giác ABC và BM = MC.
BE II CF vì 2 đường thẳng này cùng vuông góc với tia Ax(đl 1 bài từ vuông góc tới song song)
Xét tam giác BME và tam giác CMF có :
Góc EBM = Góc MCF(so le trong)
BM = MC.
BME = CMF(2 góc đối đỉnh)
=> 2 tam giác này bằng nhau( g.c.g)
=> BE = CF(2 cạnh tương ứng)
Hai tam giác BME , CMF có:
BM = MC (gt)
\(\widehat{BME}=\widehat{CMF}\) đối đỉnh
Nên \(\Delta\)BME = \(\Delta\)CMF (cạnh huyền - góc nhọn)
Suy ra BE = CF
Cho tam giác ABC (AB#AC) ,tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax (E thuộc Ax;F thuộc Ax). so sánh các độ dà BE và CF.
Xét 2 TG vuông BME và CMF, ta có:
BM=CM(M là tđiểm BC); BME=CMF(2 góc đđ)
=>TG BME=TG CMF(cạnh huyền-góc nhọn)
=>BE=CF(2 cạnh tương ứng)
Xét 2 TG vuông BME và CMF, ta có:
BM=CM(M là tđiểm BC); BME=CMF(2 góc đđ)
=>TG BME=TG CMF(cạnh huyền-góc nhọn)
=>BE=CF(2 cạnh tương ứng)
Xét 2 TG vuông BME và CMF ta có:
BM=CM (M là điểm của BC):BME =CMF (2 góc đđ)
=>TG BME =TG CMF (Cạnh huyền -góc nhnj)
=>BE=CF(2 cạnh tương ứng)
Cho tam giác ABC (AB khác AC), tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax ( E , F thuộc Ax) . So sánh độ dài BE và CF.
Vẽ hình và nêu giả thiết kết luận của bài nài nhé
Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{BME}=\widehat{CMF}\)
Do đó: ΔBEM=ΔCFM
Cho tam giác ABC (AB ≠ AC), tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax (E thuộc Ax, F thuộc Ax).
a) So sánh độ dài BE và CF;
b) Chứng minh rằng EC // BF.