Cho M nằm ngoài đường tròn (O;R). Vẽ tiếp tuyến MT. Vẽ cát tuyến MAB đi qua tâm O. Cát tuyến MCD bất kỳ. Chứng minh
MA.MB=MC.MD
MT.MT=MA.MB
Tam giác MTC đông dạng với tam giác MDT
Cho đường tròn (O) và điểm A nằm bên ngoài (O). Kẻ 2 tiếp tuyến AM, AN với đường tròn (O) (M, N là các tiếp điểm). Một đường thẳng d đi qua A cắt đường tròn (O) tại hai điểm B và C (AB< AC, d không đi qua tâm O). Hai tiếp tuyến của đường tròn (O) tại B và C cắt nhau ở K. Chứng minh K thuộc một đường thẳng cố định khi d thay đổi và thỏa mãn điều kiện đề bài.
HELP MEEEEEEEEEE
ΔKBO=ΔKCO
=>KB=KC
=>KO là trung trực của BC
ΔKCO đồng dạng với ΔCIO
=>OC/OI=OK/OC
=>OC^2=OI*OK
=>OI*OK=ON^2
=>OI/ON=ON/OK
=>ΔOIN đồng dạng với ΔONK
=>gócc ONI=góc OKN
Tương tự, ta có: OI/OM=OM/OK
=>ΔMKO đồng dạng với ΔIMO
=>góc MKO=góc IMO=góc INO
=>góc MKD=góc NKD
=>K,M,N thẳng hàng
=>K luôn thuộc MN
cho đường tròn O hai dây AB và CD,AD và BC cắt nhau tại I nằm bên trong đường tròn,AB và CE cắt nhau tại E nằm bên ngoài đường tròn.đường thẳng kẻ qua E song song AD cắt BC tại F.qua F vẽ tiếp tuyến FG với đường tròn O
chứng minh EF=FG
Cho 2 đường tròn đồng tâm, tâm O bán kính R và tâm O bán kính R' (R>R'). Điểm M nằm ngoài 2 đường tròn. Vẽ MA là tiếp tuyến của đường tròn tâm O bán kính R. MB là tiếp tuyến của đường tròn tâm O bán kính R'. Chứng minh rằng đường trung trực của đoạn thẳng AB đi qua trung điểm của OM
Cho đoạn thẳng AB =4cm gọi Ô là trung điểm của AB vẽ đường tròn tâm Ô bán kính 1cm cắt OA tại M OB tại N
a) xác định trên đoạn thẳng AB một điểm là tâm của một đường tròn bán kính 2cm đi qua O sao cho điểm N nằm trong đường tròn đó còn điểm N nằm ngoài đường tròn đó
c) đường tròn ở phần b cắt đường tròn tâm O bán kính 1cm tại C và D hãy so sánh tổng BC+CO với BM
Cho tam giác ABC nội tiếp đường tròn (O), đường cao AH(H nằm ngoài BC). Kẻ đường kính AD. CM: AD.AH=AB.AC
Cho nửa đường tròn (O) đường kính AB =2R và điểm C nằm ngoài nửa đường tròn. CA cắt nửa đường tròn tại M, CB cắt nửa đường tròn tại N. Gọi H là giao điểm của AN và BM.
a, Chứng minh CH ⊥ AB .
b, Gọi I là trung điểm của CH. Chứng minh MI là tiếp tuyến của nửa đường tròn (O).
Vẽ tam giác ABC có AB= 2cm , BC =3cm , CA=4cm và đường tròn (A;2cm).
a. Trong các điểm A,B,C điểm nào nằm bên trong ,nằm bên ngoài , nằm trên đường tròn (A;2cm)?
b. Chứng tỏ rằng tâm của đường tròn đường kính AC nằm trên đường tròn (A;2cm)
Cần gấp
Cho đường trong (O) và điểm A nằm ngoài đường tròn. Vẽ các tiếp tuyến AM và AN với đường tròn (O) (M,N là tiếp điểm). Qua A vẽ 1 đường thẳng cắt đường tròn (O) tại 2 điểm B và C (B nằm giữa A và C). Gọi H là trung điểm của BC.
a) Chứng minh tứ giác ANHM nội tiếp đường tròn tâm (O)
b) Chứng minh: AN^2=AB.AC
c) Đường thẳng qua B song song với AN cắt MN tại E. Chứng minh: EH//NC
Cho đường tròn (O, Đ) điểm A nằm ngoài đường tròn OA = 2R vẽ tiếp tuyến AB; AC (B, C là tiếp điểm)
a) Chứng minh AB ACb) Chứng minh tâm giâc ABC đềuc) Đường thẳng OA cắt đường tròn (O) tại M, N. Chứng minh ABNC là hình thoiBài 6: Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC
a) Chứng minh OA vuông góc với BC tại H
b) Từ B vẽ đường kính BD của (O), đường thẳng AD cắt đường tròn (O) tại E (khác D), Chứng minh: AE.AD=AH.AO
c) Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh FD là tiếp tuyến của đường tròn tâm (O)
d) Gọi I là trung điểm cạnh AB, qua I vẽ đừng thẳng vuông góc với cạnh AO tại M và đường thẳng này cắt đường thẳng DF tại N. Chứng minh: ND=NA