Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duyminh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 8:06

1: Xét tứ giác AEDB có

\(\widehat{AEB}=\widehat{ADB}=90^0\)

=>AEDB là tứ giác nội tiếp đường tròn đường kính AB

Tâm I là trung điểm của AB

Bán kính là \(IA=\dfrac{AB}{2}\)

2: Xét ΔDBH vuông tại D và ΔDAC vuông tại D có

\(\widehat{DBH}=\widehat{DAC}\left(=90^0-\widehat{ACB}\right)\)

Do đó: ΔDBH đồng dạng với ΔDAC

=>DB/DA=DH/DC

=>\(DB\cdot DC=DA\cdot DH\)

3: ABDE là tứ giác nội tiếp

=>\(\widehat{ADE}=\widehat{ABE}=\widehat{ABN}\)

Xét (O) có

\(\widehat{ABN}\) là góc nội tiếp chắn cung AN

\(\widehat{AMN}\) là góc nội tiếp chắn cung AN

Do đó: \(\widehat{ABN}=\widehat{AMN}\)

=>\(\widehat{HDE}=\widehat{HMN}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên DE//MN

nam do duy
Xem chi tiết
Đỗ Tuệ Lâm
27 tháng 4 2023 lúc 17:26

a.

Xét tứ giác CDHE có:

\(\widehat{CDH}+\widehat{CEH}=90^o+90^o=180^o\)

Do đó: tứ giác CDHE là tứ giác nội tiếp.

b. Gọi I là trung điểm của HC

=> I là tâm đường tròn ngoại tiếp tam giác DEC

Có: EM là trung tuyến tam giác vuông BEA

=> \(\widehat{MEB}=\widehat{MBE}\)

EI là trung tuyến tam giác vuông HEC

=> \(\widehat{IEH}=\widehat{IHE}\)

Mà: \(\widehat{MBE}=\widehat{ECH}\) (cùng phụ \(\widehat{BAC}\) )

=> \(\widehat{MEI}=\widehat{MEH}+\widehat{IEH}=\widehat{ECH}+\widehat{EHI}=90^o\)

=> ME vuông góc EI hay ME là tiếp tuyến của đường tròn ngoại tiếp tam giác CDE.

c. Xét tam giác vuông BDH và tam giác vuông ADC có:

\(\widehat{BHD}=\widehat{ACD}\) (cùng phụ \(\widehat{HBD}\) )

=> \(\Delta BDH\sim\Delta ADC\)

=> \(\dfrac{BD}{DA}=\dfrac{DH}{DC}\)

<=> \(DH.DA=BD.DC\le\left(\dfrac{BD+DC}{2}\right)^2=\dfrac{BC^2}{4}=\dfrac{3R^2}{4}\)

\(DH.DA\) max \(=\dfrac{3R^2}{4}\)  khi và chỉ khi BD = DC <=> D là trung điểm của BC hay A là điểm chính giữa cung lớn BC.

T.Lam

Trần Anh Hoàng
Xem chi tiết
Nguyễn Tấn Dũng
Xem chi tiết
Đức Hạnh
Xem chi tiết
Đức Hạnh
9 tháng 5 2021 lúc 18:28

giúp mình câu b với các bạn ơi

 

Tử Ái
Xem chi tiết
Trần Thị Thanh Thủy
Xem chi tiết
Vô danh
Xem chi tiết
Anh Quynh
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 12 2021 lúc 21:31

\(a,\widehat{ACM}=90^0\) (góc nt chắn nửa đg tròn)

\(b,\widehat{BAH}+\widehat{ABH}=90^0;\widehat{OAC}+\widehat{AMC}=90^0\left(\widehat{ACM}=90^0\right)\)

Mà \(\widehat{ABH}=\widehat{AMC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\)

Do đó \(\widehat{BAH}=\widehat{OAC}\)

Xuân Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 4 2023 lúc 22:46

a: góc BDH+góc BFH=180 độ

=>BDHF nội tiếp

góc BFC=góc BEC=90 dộ

=>BFEC nội tiếp

b: góc FEB=góc BAD

góc DEB=góc FCB

mà góc BAD=góc FCB

nên góc FEB=góc DEB

=>EB là phân giác của góc FED

c: Kẻ tiếp tuyến Ax của (O)

=>góc xAC=góc ABC=góc AEF

=>Ax//FE

=>FE vuông góc OA

=>OA vuông góc IK