Bài 4: Cho ABC có 3 góc nhọn nội tiếp trong (O;R) , dường kính AD và đường cao AH của ABC.
a) Chứng minh: AB.AC =AH.AD
b) Đường thẳng AH cắt (O) tại E. Gọi K là điểm đối xứng của E qua BC.
Chứng minh: K là trực tâm của ABC.
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) (AB
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) (AB<AC) 3 đường cao AD,BE,CF cắt nhau tại H
a,CM tứ giác BFEC nội tiếp và xác định tâm I
b,Đường thẳng EF cắt đường thẳng BC tại K . CM KF.KE=KB.KC
c,AK cắt (O) tại M. CM MFEA nội tiếp
jup mình vs ạ
Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn O. Hai đường cao AD, BE cắt nhau tại H. Chứng minh tứ giác ABDE nội tiếp đường tròn
Cho tam giác ABC có 3 gó nhọn , nội tiếp đường tròn O . Hai đường cao AD,BE cắt nhau tại H
a, chứng minh tứ giác ABDE nội tiếp đường tròn
b, Tia AO cắt đương tròn O tại K . Chứng minh tứ giác BHCK là hình bình hành
Bài 1: Cho tam giác ABC (AB> AC) có ba góc nhọn nội tiếp đường tròn (O). Gọi H là giao điểm của các đường cao AM, BQ, CK a, Chứng minh: Tứ giác MHKB nội tiếp và tử giác BKQC nội tiếp. b, Qua A kẻ tiếp tuyến Ay với đường tròn (O) cắt đường thẳng BC tại F. Chứng minh FA^2 = FB. FC
Bài 2: Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O; R ). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H.Gọi S là diện tích tam giác ABC. a) Chứng minh các tử giác AEHF và AEDB nội tiếp được. b) Chứng minh AB. BC. AC=4RS c) Chứng minh OC vuông góc với DE và ( DE+EF+FD). R = 2S
a) Xét tứ giác AEHF có
\(\widehat{HEA}+\widehat{HFA}=180^0\)
nên AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét tứ giác AEDB có
\(\widehat{AEB}=\widehat{ADB}\left(=90^0\right)\)
nên AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O),đường cao AH.Kẻ đường kính AM.
a.Tính góc ACM.
b.Chứng minh góc BAH = góc OA
\(a,\widehat{ACM}=90^0\) (góc nt chắn nửa đg tròn)
\(b,\widehat{BAH}+\widehat{ABH}=90^0;\widehat{OAC}+\widehat{AMC}=90^0\left(\widehat{ACM}=90^0\right)\)
Mà \(\widehat{ABH}=\widehat{AMC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\)
Do đó \(\widehat{BAH}=\widehat{OAC}\)
cứuu Bài 1: Cho tam giác ABC (AB> AC) có ba góc nhọn nội tiếp đường tròn (O). Gọi H là giao điểm của các đường cao AM, BQ, CK a, Chứng minh: Tứ giác MHKB nội tiếp và tử giác BKQC nội tiếp. b, Qua A kẻ tiếp tuyến Ay với đường tròn (O) cắt đường thẳng BC tại F. Chứng minh FA^2 = FB. FC
a: góc BMH+góc BKH=180 độ
=>BMHK nội tiếp
góc BKC=góc BQC=90 độ
=>BKQC nội tiếp
b: Xét ΔFAB và ΔFCA có
góc FAB=góc FCA(=1/2sđ cung AB)
góc F chung
=>ΔFAB đồng dạng với ΔFCA
=>FA/FC=FB/FA
=>FA^2=FC*FB
Bài 3: Cho tam giác nhọn ABC nội tiếp (O). Từ B, C kẻ hai tiếp tuyến với đường tròn, chúng cắt nhau tại D. Từ D kẻ cát tuyến song song với AB cắt đường tròn tại E, F và cắt AC tại I. a) C/m: góc BAC = góc DOC b) C/m: 4 điểm O, I, D, C nằm trên một đường trũn. c) C/m: IE = IF. d) C/m: ID là tia phân giác của góc BIC.
a: Xét tứ giác OBDC có \(\widehat{OBD}+\widehat{OCD}=90^0+90^0=180^0\)
nên OBDC là tứ giác nội tiếp
=>\(\widehat{DOC}=\widehat{DBC}\left(1\right)\)
Xét (O) có
\(\widehat{DBC}\) là góc tạo bởi tiếp tuyến BD và dây cung BC
\(\widehat{BAC}\) là góc nội tiếp chắn cung BC
Do đó: \(\widehat{DBC}=\widehat{BAC}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{DOC}=\widehat{BAC}\)
b: Ta có: DI//AB
=>\(\widehat{CID}=\widehat{CAB}\)(hai góc đồng vị)
mà \(\widehat{CAB}=\widehat{DBC}\)
và \(\widehat{DBC}=\widehat{DOC}\)
nên \(\widehat{CID}=\widehat{COD}\)
=>CIOD là tứ giác nội tiếp
c: ta có: CIOD là tứ giác nội tiếp
=>\(\widehat{OID}=\widehat{OCD}=90^0\)
=>OI\(\perp\)EF tại I
Ta có: ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
=>IE=IF
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn<O> b BF,CK là các đường cao của tam giác ABC cắt đường tròn <O> tại D,E chứng minh
a, tứ giác BCKF nội tiếp
b, DE // FK
a) Có \(\widehat{BFC}=\widehat{CKB}=90^0\)
=> Tứ giác BCFK nội tiếp
b)Có \(\widehat{BCK}=\widehat{BFK}\)( vì tứ giác BCFK nội tiếp )
mà \(\widehat{BCE}=\widehat{BDE}=\dfrac{1}{2}sđ\stackrel\frown{EB}\)
=> \(\widehat{BFK}=\widehat{BDE}\) mà hai góc nằm ở vị trí hai góc đồng vị
=> KF//DE
Cho tam giac ABC có 3 góc nhọn ( AB<AC ) nội tiếp (O) . Các đường cao AD , BE , CF cắt nhau tại H . C/m : tứ giác BDEF nội tiếp