Cho 2 đa thức : \(P\left(x\right)=x^2+2xm+m^2;Q\left(x\right)=x^2+\left(2m+1\right)x+m^2\)
Tìm m biết P(1)=Q(-1)
Tìm đa thức \(P\left(x\right)\), biết rằng đa thức \(P\left(x\right)\) chia cho đa thức \(x-2\) có số dư là : 35. Đa thức \(P\left(x\right)\) chia cho đa thức \(x+1\) có số dư là 5. Đa thức \(P\left(x\right)\) chia cho đa thức \(2x^2+5x+2\) có thương là \(x\).
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ em tham khảo với ạ! Em cám ơn mọi người nhiều ạ!
a) Cho hai đa thức \(P\left(x\right)=x^2+2mx+m^2\)và \(Q\left(x\right)=x^2-\left(2m+1\right)x+m^2\)
Tìm m biết P(3)=Q(-2)
b) Cho hai đa thức \(P\left(x\right)=x^2+2mx+m^2\)và \(Q\left(x\right)=x^2+\left(2m+1\right)x+m^2\)
Tìm m biết P(1)=Q(-1)
Cho đa thức f(x) tỏa mãn \(\left(x^2-5x\right).f\left(x-2\right)=\left(x^2+3x+2\right).f\left(x+1\right)\)với mọi x. Chứng tỏ rằng đa thức f(x) không có nghiệm.
\(f\left(x\right)=\left(m^2-1\right)x^3+\left(m-1\right)x^2-2x-1\)Cho đa thức trên tìm giá trị của hằng số m để đa thức có bậc bằng 2
Bài 1: Cho đa thức A(x) = \(\left(5x^3-6x^2+7\right)+\left(5x^2-3x^3-2\right)\)
a) Tìm giá trị của x để A(x) = 5
b) Tìm đa thức B(x) biết 2A + B = \(3x^2+10\)
Bài 2: Cho đa thức P = \(\left(\dfrac{-3}{4}x^3y^2\right).\left(\dfrac{1}{2}x^2y^5\right)\) . Cho đa thức M(x) =\(x^2-4x+3\), chứng tỏ rằng x = 3 là nghiệm của đa thức M(x) và x = -1 không phải là nghiệm của đa thức M(x)
Bài 2:
\(M\left(3\right)=3^2-4\cdot3+3=0\)
=>x=3 là nghiệm của M(x)
\(M\left(-1\right)=\left(-1\right)^2-4\cdot\left(-1\right)+3=1+3+4=8\)
=>x=-1 không là nghiệm của M(x)
a.Tìm số thực m để đa thức \(P\left(x\right)=3x^3+2x^2-5x+m\) chia hết cho đa thức \(Q\left(x\right)=x+1\)
b.Tìm các số thực a, b để đa thức \(P\left(x\right)=2x^3+ax^2+bx+3\) chia hết cho đa thức \(Q\left(x\right)=x^2-3x+2\)
a, Ta có \(Q\left(x\right)=x+1=0\Leftrightarrow x=-1\)
Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là -1 hay
\(3\left(-1\right)^3+2\left(-1\right)^2-5\left(-1\right)+m=0\Leftrightarrow m=-4\)
b.. ta có \(Q\left(x\right)=x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là 1 và 2 hay
\(\hept{\begin{cases}2+a+b+3=0\\2.2^3+a.2^2+b.2+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=-5\\4a+2b=-19\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{9}{2}\\b=-\frac{1}{2}\end{cases}}\)
Tìm số dư khi chia đa thức \(f\left(x\right)=x^{1234}-1\) cho đa thức \(g\left(x\right)=\left(x^2+1\right)\left(x^2-x+1\right)\)
Tìm a; b sao cho:
b) Đa thức \(\left(x^3-3x+a\right)\)⋮đa thức \(\left(x-1\right)^2\)
c) Đa thức \(\left(x^4+ax^3+b\right)\)⋮đa thức \(\left(x^2-1\right)\)
d) Đa thức \(\left(3x^2+ax+27\right)\)⋮đa thức (x+5) dư 27
cho đa thức \(Q\left(x\right)=x\left(\dfrac{x^2}{2}-\dfrac{1}{2}x^3+\dfrac{1}{2}x\right)-\left(-\dfrac{1}{2}x^4+x^2\right)\)
tìm bậc của đa thức Q(x)
tính Q(-1/2)
a)\(x\left(\dfrac{x^2}{2}-\dfrac{1}{2}x^3+\dfrac{1}{2}x\right)-\left(-\dfrac{1}{2}x^4+x^2\right)\)
\(\Leftrightarrow\dfrac{x^3}{2}-\dfrac{1}{2}x^4+\dfrac{1}{2}x^2-\dfrac{1}{2}x^4-x^2\)
\(\Leftrightarrow\dfrac{1}{2}x^2\left(x-x^2+1\right)-x^2\)
vậy bậc của đa thức là 2
b)\(Q\left(-\dfrac{1}{2}\right)=\dfrac{1}{2}\left(-\dfrac{1}{2}\right)^2\left[-\dfrac{1}{2}-\left(-\dfrac{1}{2}\right)^2+1\right]-\left(-\dfrac{1}{2}\right)^2\)
\(=\dfrac{1}{2}.\dfrac{1}{4}\left(-\dfrac{1}{2}-\dfrac{1}{4}+1\right)-\dfrac{1}{4}=\dfrac{1}{8}.\dfrac{1}{4}-\dfrac{1}{4}\)
\(=\dfrac{1}{32}-\dfrac{1}{4}=-\dfrac{7}{32}\)