a) Tìm đa thức \(f_{\left(x\right)}=x^2+ax+b\) , biết khi chia \(f_{\left(x\right)}\) cho \(x+1\) thì dư là \(6\), còn khi chia cho \(x-2\) thì dư là \(3\)
b) Cho đa thức \(f_{\left(x\right)}=x^4-3x^3+bx^2+ax+b\) ; \(g_{\left(x\right)}=x^2-1\)
Tìm các hệ số của \(a;b\) để \(f_{\left(x\right)}\) chia hết cho \(g_{\left(x\right)}\)
Tìm số dư của phép chia \(f\left(x\right):\left[\left(x-1\right)\left(x-3\right)\right]\) biết f(x) chia cho x-1 dư 4, chia cho x-3 dư 14.
Phân tích đa thức thành nhân tử
a) \(\left(x^2+x\right)^2+3\left(x^2+x\right)+2\)
b) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
c) \(\left(x^2+x+1\right)\left(x^2+3x+1\right)+x^2\)
d) \(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)
e) \(\left(x^2-8\right)^2+36\)
f) \(81x^4+4\)
Chia đa thức cho đơn thức
a) \(\left(-2\right)^5:\left(-2\right)^3\)
b) \(\left(-y\right)^7:\left(-y\right)^3\)
c) \(x^{12}:\left(-x^{10}\right)\)
d) \(\left(2x^6\right):\left(2x\right)^3\)
e) \(\left(-3x\right)^5:\left(-3x\right)^2\)
f) \(\left(xy^2\right)^4:\left(xy^2\right)^2\)
i) \(\left(x+2\right)^9:\left(x+2\right)^6\)
1) Tìm đa thức \(P\left(x\right)=ax^2+bx+c\) sao cho thoả mãn điều kiện sau:
\(\left|P\left(x\right)\right|\le10\); \(-1\le x\le1\); \(\left|a\right|+\left|b\right|+\left|c\right|\) đạt GTLN
2) Tìm đa thức \(P\left(x\right)=ax^2+bx+c\) thỏa mãn
\(\left|P\left(x\right)\right|\le1\) ; \(-1\le x\le1\); \(\dfrac{3}{8}a^2+2b^2\) đạt GTLN
Phân tích đa thức thành nhân tử
\(x^2\left(x+4\right)^2-\left(x-4\right)^2-\left(x^2-1\right)\)
Rút gọn các biểu thức sau:
A= \(\left(x+1\right).\left(x^2-x+1\right)+2.\left(x+1\right)-x.\left(x^2+2\right).\)
B= \(\left(5x+1\right).\left(x+7\right)-5x.\left(x-1\right).\)
Phân tích các đa thức sau thành nhân tử:
a) \(x^2+2xy+y^2-x-y-12\)
b) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
Xác dịnh đa thức \(f_{\left(x\right)}\) :
a) \(f_{\left(x\right)}:\left(x-1\right)\text{ }dư\text{ }4\)
b) \(f_{\left(x\right)}:\left(x+2\right)\text{ }dư\text{ }1\)