Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuấn Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 2 2023 lúc 23:10

Chọn B

Tuấn Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2023 lúc 0:15

Chọn B

nguyen khai
Xem chi tiết
Phan Thảo
16 tháng 7 2017 lúc 17:00

Tự vẽ hình, mình không quen sử dụng cách vẽ hình ở đây.

Giải

Kẻ AH vuông góc với AB tại A( AH thuộc BI). Kẻ AK vuông góc với BI.

Tự chứng minh tam giác AIH cân tại A => AH=AI = 2 căn 5. 

                                                             => IK= KH= x( x>0)

Xét tam giác ABH vuông tại A=> AH2= HK x BH

                                              <=> AH2= x(2x+3). Mà AH= 2 căn 5

=>  x(2x+3)= 20=>x=2.5   

Có AB2= BH.BK= (3+x)(3+2x)=44 => AB= 2 căn 11

              k nha

Minh tú Trần
Xem chi tiết
Nguyễn Tất Đạt
26 tháng 6 2021 lúc 21:46

B A C I K H x

Gọi chân đường cao hạ từ A của tam giác ABC là H, K là giao của phân giác ngoài góc B và AH.

Đặt \(IH=x\left(x>0\right)\)

Theo hệ thức lượng: \(IB^2=IH.IK\Rightarrow IK=\frac{IB^2}{IH}=\frac{9}{x},KH=IK-IH=\frac{9}{x}-x\)

Theo định lí đường phân giác, ta có: \(\frac{IH}{IA}=\frac{KH}{KA}\)

Hay \(\frac{x}{2\sqrt{5}}=\frac{\frac{9}{x}-x}{\frac{9}{x}+2\sqrt{5}}\Leftrightarrow9+2\sqrt{5}x=\frac{18\sqrt{5}}{x}-2\sqrt{5}x\)

\(\Leftrightarrow4\sqrt{5}x^2+9x-18\sqrt{5}=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3\sqrt{5}}{4}\\x=-\frac{6\sqrt{5}}{5}\left(l\right)\end{cases}}\)

Vậy \(AB=\sqrt{HA^2+HB^2}=\sqrt{\left(IH+IA\right)^2+IB^2-IH^2}\)

\(=\sqrt{\left(\frac{3\sqrt{5}}{4}+2\sqrt{5}\right)^2+3^2-\left(\frac{3\sqrt{5}}{4}\right)^2}=2\sqrt{11}.\)

Khách vãng lai đã xóa
Huỳnh Ngọc Nhiên
Xem chi tiết
nguyen khai
16 tháng 7 2017 lúc 17:00

Kẻ AH vuông góc với AB tại A( AH thuộc BI). Kẻ AK vuông góc với BI.

Tự chứng minh tam giác AIH cân tại A => AH=AI = 2 căn 5. 

                                                             => IK= KH= x( x>0)

Xét tam giác ABH vuông tại A=> AH2= HK x BH

                                              <=> AH2= x(2x+3). Mà AH= 2 căn 5

=>  x(2x+3)= 20=>x=2.5   

Có AB2= BH.BK= (3+x)(3+2x)=44 => AB= 2 căn 11

Gia Linh Trần
Xem chi tiết
Võ An Phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 15:12

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔBAC có BD là phan giác

=>AD/AB=DC/BC

=>AD/3=DC/5=8/8=1

=>AD=3cm; DC=5cm

b: Xét ΔBAD vuông tại A va ΔBHI vuông tại H có

góc ABD=góc HBI

=>ΔBAD đồng dạng với ΔBHI

=>AD/HI=BA/BH

=>AD*BH=HI*BA
c: góc ADI=góc BIH=góc AID

=>ΔAID cân tại A

Nguyễn Xuân Bách
Xem chi tiết
nguyen khai
16 tháng 7 2017 lúc 16:59

Kẻ AH vuông góc với AB tại A( AH thuộc BI). Kẻ AK vuông góc với BI. Tự chứng minh tam giác AIH cân tại A => AH=AI = 2 căn 5. => IK= KH= x( x>0) Xét tam giác ABH vuông tại A=> AH2= HK x BH <=> AH2= x(2x+3). Mà AH= 2 căn 5 => x(2x+3)= 20=>x=2.5 Có AB2= BH.BK= (3+x)(3+2x)=44 => AB= 2 căn 11

ミ★Zero ❄ ( Hoàng Nhật )
30 tháng 5 2020 lúc 21:11

Tự vẽ hình nha

giải 

Kẻ AH vuông góc với AB tại A ( AH thuộc BI ) kẻ AK vuông góc với BI

Tự chứng minh tam giác AIH cân tại A => AH = AI = 2 căn 5

                                                              => IK = KH = x ( x > 0 )

Xét tam giác ABH vuông tại A => AH2  = HK x BH

                                                 => AH2 = x ( 2x + 3 ) mà AH = 2 căn 5

=> x ( 2x + 3 ) = 20 => x = 2.5

Có AB2 = BH x BK = ( 3 + x )( 3 + 2x )=44 => AB = 2 căn 11

Hok tốt ^^

Khách vãng lai đã xóa
Nguyên Phạm Hoàng Lê
Xem chi tiết