Cho tam giác ABC cân tại A,I là giao điểm của 2 đường phân giác trong.Biết IA=\(3\sqrt{6}\)cm ;IB=3cm.Tính độ dài cạnh AB,BC.
Cho ΔABC cân tại A,I là giao điểm của hai đường phân giác trong.Biết IB=3;IA=\(3\sqrt{6}\).Độ dài cạnh AB là
A.\(5\sqrt{3}\) B.\(\dfrac{3\sqrt{17}}{2}\) C.\(3\sqrt{19}\) D.3\(\sqrt{10}\)
Cho ΔABC cân tại A.I là giao điểm của hai đường phân giác trong.Biết IB=3;IA=\(3\sqrt{6}\).Độ dài cạnh AB là
A.5\(5\sqrt{3}\) B.\(3\sqrt{19}\) C.\(3\sqrt{10}\) D.\(\dfrac{3\sqrt{17}}{2}\)
cho tam giác abc cân tại A, i là giao 3 đường phân giác biết IA =\(2\sqrt{5}\)cm, IB = 3 cm. tính AB
Tự vẽ hình, mình không quen sử dụng cách vẽ hình ở đây.
Giải
Kẻ AH vuông góc với AB tại A( AH thuộc BI). Kẻ AK vuông góc với BI.
Tự chứng minh tam giác AIH cân tại A => AH=AI = 2 căn 5.
=> IK= KH= x( x>0)
Xét tam giác ABH vuông tại A=> AH2= HK x BH
<=> AH2= x(2x+3). Mà AH= 2 căn 5
=> x(2x+3)= 20=>x=2.5
Có AB2= BH.BK= (3+x)(3+2x)=44 => AB= 2 căn 11
k nha
Tam giác ABC cân tại A, gọi I là giao điểm các đường phân giác. Biết IA= \(2\sqrt{5}\)cm, IB= 3cm. Tính độ dài AB
Gọi chân đường cao hạ từ A của tam giác ABC là H, K là giao của phân giác ngoài góc B và AH.
Đặt \(IH=x\left(x>0\right)\)
Theo hệ thức lượng: \(IB^2=IH.IK\Rightarrow IK=\frac{IB^2}{IH}=\frac{9}{x},KH=IK-IH=\frac{9}{x}-x\)
Theo định lí đường phân giác, ta có: \(\frac{IH}{IA}=\frac{KH}{KA}\)
Hay \(\frac{x}{2\sqrt{5}}=\frac{\frac{9}{x}-x}{\frac{9}{x}+2\sqrt{5}}\Leftrightarrow9+2\sqrt{5}x=\frac{18\sqrt{5}}{x}-2\sqrt{5}x\)
\(\Leftrightarrow4\sqrt{5}x^2+9x-18\sqrt{5}=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3\sqrt{5}}{4}\\x=-\frac{6\sqrt{5}}{5}\left(l\right)\end{cases}}\)
Vậy \(AB=\sqrt{HA^2+HB^2}=\sqrt{\left(IH+IA\right)^2+IB^2-IH^2}\)
\(=\sqrt{\left(\frac{3\sqrt{5}}{4}+2\sqrt{5}\right)^2+3^2-\left(\frac{3\sqrt{5}}{4}\right)^2}=2\sqrt{11}.\)
Tam giác ABC cân tại A, I là giao điểm 3 đường phân giác trong biết IA=\(2\sqrt{5}\) cm và IB= 3cm. Kẻ AM vuông góc với AB (M thuộc BI). Tính AB.
Kẻ AH vuông góc với AB tại A( AH thuộc BI). Kẻ AK vuông góc với BI.
Tự chứng minh tam giác AIH cân tại A => AH=AI = 2 căn 5.
=> IK= KH= x( x>0)
Xét tam giác ABH vuông tại A=> AH2= HK x BH
<=> AH2= x(2x+3). Mà AH= 2 căn 5
=> x(2x+3)= 20=>x=2.5
Có AB2= BH.BK= (3+x)(3+2x)=44 => AB= 2 căn 11
cho tam giác ABC vuông tại A.Gọi I là giao điểm của các đường phân giác trong.Biết AB=5cm;IC=6cm.Tính BC
Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm, đường cao AH, đường phân giác BD. Gọi I là giao điểm của AH và BD a, Tính độ AD, DC b, CM: AD.BI=BD.HB c, Chứng minh tam giác AID là tam giác cân ? d, CM: IH trên IA = AD trên DC
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔBAC có BD là phan giác
=>AD/AB=DC/BC
=>AD/3=DC/5=8/8=1
=>AD=3cm; DC=5cm
b: Xét ΔBAD vuông tại A va ΔBHI vuông tại H có
góc ABD=góc HBI
=>ΔBAD đồng dạng với ΔBHI
=>AD/HI=BA/BH
=>AD*BH=HI*BA
c: góc ADI=góc BIH=góc AID
=>ΔAID cân tại A
Cho tam giác ABC cân tại A,gọi I là giao điểm của các đường phân giác. Biết IA=2√5,IB=3cm.Tính độ dài AB
Kẻ AH vuông góc với AB tại A( AH thuộc BI). Kẻ AK vuông góc với BI. Tự chứng minh tam giác AIH cân tại A => AH=AI = 2 căn 5. => IK= KH= x( x>0) Xét tam giác ABH vuông tại A=> AH2= HK x BH <=> AH2= x(2x+3). Mà AH= 2 căn 5 => x(2x+3)= 20=>x=2.5 Có AB2= BH.BK= (3+x)(3+2x)=44 => AB= 2 căn 11
Tự vẽ hình nha
giải
Kẻ AH vuông góc với AB tại A ( AH thuộc BI ) kẻ AK vuông góc với BI
Tự chứng minh tam giác AIH cân tại A => AH = AI = 2 căn 5
=> IK = KH = x ( x > 0 )
Xét tam giác ABH vuông tại A => AH2 = HK x BH
=> AH2 = x ( 2x + 3 ) mà AH = 2 căn 5
=> x ( 2x + 3 ) = 20 => x = 2.5
Có AB2 = BH x BK = ( 3 + x )( 3 + 2x )=44 => AB = 2 căn 11
Hok tốt ^^
Cho \(Δ ABC\) cân tại A. Gọi I là giao điểm các đường phân giác trong của tam giác.Biết \(IA= 2\sqrt{5}cm\) ,\(IB= 3cm\) .Tính độ dài AB.