Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ha Bui
Xem chi tiết
Đặng Thu Trang
Xem chi tiết
ly thi ngoc tu
Xem chi tiết
phandai
Xem chi tiết
thai le
Xem chi tiết
Nguyễn Nguyệt Hằng
17 tháng 4 2017 lúc 21:52

B A C E F D

a.Xét \(\Delta ABD\)\(\Delta EBD\) có:

\(\widehat{ABD}=\widehat{EBD}\) ( giả thiết)

BD - cạnh chung

\(\widehat{BAD}=\widehat{BED}\) ( = 90 do)

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.h-g.n\right)\)

\(\Rightarrow AB=EB\) ( 2 cạnh tương ứng)

b.Xét \(\Delta ADF\)\(\Delta EDC\) có:

\(\widehat{ADF}=\widehat{EDC}\) ( đối đỉnh)

AD = ED ( vi \(\Delta ABD=\Delta EBD\) )

\(\widehat{DAF}=\widehat{DEC}\) ( = 90 do)

\(\Rightarrow\Delta ADF=\Delta EDC\left(g.c.g\right)\)

=> DF = DC ( 2 cạnh tương ứng)

=> \(\Delta FDC\) cân tại D

c.Ta có:AB = EB (cm a)

=> \(\Delta ABE\) cân tại B

Mà BD là đường phân giác \(\widehat{ABE}\)

=> BD là đường trung trực của \(\Delta ABE\)

=> \(BD\perp AE\) (1)

Lại có: \(\Delta ADF=\Delta EDC\) ( cm b )

=>AF = EC ( 2 cạnh tương ứng)

Mà AB = BE => AB+AF=BE+EC

=> BF = BC. => \(\Delta BFC\) cân tại B

Mà BD là đường phân giác \(\widehat{ABC}\) hay \(\widehat{FBC}\)

=> BD là đường trung trực của \(\Delta FBC\)

=> \(BD\perp FC\) (2)

Từ (1),(2) => AE// FC ( dpcm)

thai le
17 tháng 4 2017 lúc 21:11

tra loi jup minh cau hoi

Nguyễn Thị Ngọc Thơ
17 tháng 4 2017 lúc 21:27

Bài này cũng dễ thôi !

Hình bạn tự vẽ nha

Chứng minh

a, Xét \(\Delta BAD\)\(\Delta BED\)

BD chung

\(\widehat{ABD}=\widehat{EBD}\) ( gt )

\(\widehat{BAD}=\widehat{BED}\) (= 1v )

\(\Rightarrow\Delta BAD=\Delta BED\) (ch - gn )

\(\Rightarrow BA=BE\)

b, \(\Delta BAD=\Delta BED\) (câu a )

\(\Rightarrow AD=DE\)

Xét \(\Delta DAF\)\(\Delta DEC\) có :

AD = DE (c/m trên )

\(\widehat{ADF}=\widehat{EDC}\) (đối đỉnh )

\(\widehat{DAF}=\widehat{DEC}\) (= 1v )

\(\Rightarrow\Delta DAF=\Delta DEC\) ( g.c.g)

\(\Rightarrow DF=DC\)

\(\Rightarrow\Delta CDF\) cân tại D

phạm nguyễn tú anh
Xem chi tiết
Nguyễn Tuấn Minh
31 tháng 3 2017 lúc 20:43

Bạn tự vẽ hình nhé

Xét các tam giác vuông AKM và tam giác vuông CHN có

AM=NC ( bằng 1 nửa đoạn AB=AC)

Góc MAK= góc NCH ( cùng phụ với AMC)

=> \(\Delta AKM=\Delta CHN\)( cạnh huyền - góc nhọn)

=> AK=HC ( 2 cạnh tương ứng)

Ta có NH//AK( quan hệ giữa tính vuông góc và song song) (1)

Có N là trung điểm của cạnh AC (2)

Từ (1) và (2) => NH là đường trung bình của \(\Delta ACK\) 

=>H là trung điểm của KC

b) Theo câu a, ta có AK=HC và KH=HC

=>AK=HC

=> AK2+KH2=AH2

=>2.AK2=16

=>AK2=8

=>AK=KH=\(\sqrt{8}\)

=>KC=2.KH=2.\(\sqrt{8}\)=\(\sqrt{32}\)

Xét tam giác vuông AKC vuông tại K có AC2=AK2+KC2

=>AC2=8+32=40

=>\(AC=AB=\sqrt{40}\)

Diện tích tam giác ABC là

\(\frac{\sqrt{40}.\sqrt{40}}{2}=\frac{40}{2}=20\) cm2

Câu c hình như sai đề

phạm nguyễn tú anh
1 tháng 4 2017 lúc 20:35

Theo cau a ta co:

goc BAK = gocACH va AK = CH

Ta CM duoc tam giac BKA = Tam giac AHC ( c . g . c )

Suy ra goc DKA = goc AHC

Ma tam giac AKH vuong tai A

Suy ra goc AHK = 45 do 

Suy ra goc AHC = 135 do ( ke bu )

Hay goc AKB = 135 do

Ta co goc AKH = 90 do Suy ra goc BKH = 135 do

Hay AKB = 135 do

Ta lai co goc AKH = 90 do Suy ra BKH = 35 do 

Suy ra tam giac BKA = tam gic BKM

goc BHK = goc BAK

Do HE ||  AC ( cung vuong goc AB )

Suy ra goc EHM = goc ACH Va goc BAK = goc ACH

Suy ra BHK = MHE

HM la tia phan giac goc EHB

Lưu Tiến Long
Xem chi tiết
Pham Thu Hang
11 tháng 1 2020 lúc 22:15

Xét tam giác ADH và tam giácAEK có:

AH=AK(gt)

góc ADH=góc AEK(gt)

AD =AE(gt)

vậy tam giác ADH=tam giác AEK(c-g-c)

=>AH=AK(2 cạnh tương ứng)

sai đừng giận mk nhé!!

Khách vãng lai đã xóa
coolkid
11 tháng 1 2020 lúc 22:21

Tự kẻ hình nha man,t nhác quá không muốn vẽ

Tam giác ADB và tam giác AEC bằng nhau vì \(AB=AC;\widehat{ABD}=\widehat{ACE};BD=AE\left(ezprove\right)\)

\(\Rightarrow\widehat{BAD}=\widehat{EAC}\Rightarrow\Delta AHD=\Delta AEK\left(ch-gn\right)\)

\(\Rightarrow AH=AK\left(đpcm\right)\)

Khách vãng lai đã xóa
Lưu Tiến Long
Xem chi tiết
Minh Nguyen
13 tháng 1 2020 lúc 23:38

A B C H K I

   GT      

Cho \(\Delta\)ABC cân tại A. Qua B và C lần lượt kẻ BH, CK vuông góc với AC,

AB tại H và K. Hai đường này cắt nhau tại I.

KLCMR : AI là tia phân giác góc A.

Có : \(\Delta\)ABC cân tại A.

\(\Leftrightarrow\widehat{ABC}=\widehat{ACB}\)

\(\Leftrightarrow\widehat{ABH}+\widehat{HBC}=\widehat{ACK}+\widehat{KCB}\)(1)

Xét \(\Delta\)BHC và \(\Delta\)CKB có :

\(\widehat{BHC}=\widehat{CKB}=90^0\)

\(\Leftrightarrow\widehat{KCB}+\widehat{KBC}=\widehat{HBC}+\widehat{HCB}=90^0\)

Mà : \(\widehat{KBC}=\widehat{HCB}\)

 \(\Leftrightarrow\widehat{KCB}=\widehat{HBC}\)            

  +)  \(\Leftrightarrow\Delta\)IBC cân tại I                     +) Từ (1)

       \(\Leftrightarrow IB=IC\)(2)                       \(\Leftrightarrow\widehat{ABH}=\widehat{ACK}\)(3)

Lại có do \(\Delta\)ABC cân tại A 

\(\Leftrightarrow AB=AC\) (4)

Từ (2);(3) và (4) \(\Rightarrow\Delta\)ABI = \(\Delta\)ACI (cgc)

\(\Rightarrow\widehat{BAI}=\widehat{CAI}\left(cgtu\right)\)

\(\Leftrightarrow\)AI là phân giác góc A ( đpcm )


 

Khách vãng lai đã xóa
nguyễn huy nam
Xem chi tiết