Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tranhaanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 7 2023 lúc 14:25

AI=căn 4^2-2,4^2=3,2cm

AB=4^2/3,2=5cm

BH=căn 5^2-4^2=3cm

BC=AB^2/BH=25/3(cm)

Tuấn Minh Hoàng
Xem chi tiết
Jin44
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 12 2023 lúc 10:29

Xét ΔFHA vuông tại F và ΔACB vuông tại A có

\(\widehat{FHA}=\widehat{ACB}\left(=90^0-\widehat{HAC}\right)\)

Do đó: ΔFHA đồng dạng với ΔACB

=>\(\dfrac{AF}{AB}=\dfrac{HA}{CB}\)

Xét tứ giác AEHF có \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

nên AEHF là hình chữ nhật

=>AH=EF

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(EF\cdot BC=AH\cdot BC\)

Xét ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\)

\(\dfrac{AE\cdot AB}{EF\cdot BC}=\dfrac{AH^2}{AH\cdot BC}=\dfrac{AH}{BC}=\dfrac{AF}{AB}\)

Razen
Xem chi tiết
Tử Nguyệt Hàn
22 tháng 9 2021 lúc 13:58

tam giác AHB vuông tại H , đường cao HE có
AH2=AE.AB
tam giác AHC vuông tại H , đường cao HF có
AH2=AF.AC
=>   AE.AB=AF.AC

Chứng minh: HB/HC = (AB/AC)2
tam giác ABC vuông tại A , đường cao AH có
AB2=HB.BC
AC2=HC.BC
\(\dfrac{AB^2}{AC^2}=\dfrac{HB.BC}{HC.BC}\)
<=>   \(\dfrac{AB^2}{AC^2}=\dfrac{HB}{HC}\)
<=>  HB/HC = (AB/AC)2
 

Kon Kon
Xem chi tiết
Gấu Zan
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2021 lúc 21:58

Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

Phùng thanh thuý
Xem chi tiết
thanh hoa
Xem chi tiết
An Thy
14 tháng 7 2021 lúc 20:10

bạn tham khảo ở đây,mình từng làm 1 lần rồi

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-aduong-cao-ahhfvuong-goc-voi-ac-tai-f-he-vuong-goc-voi-ab-tai-egoi-o-la-giao-diem-cua-ahefchung-minhaaeabafacbbhhc4oeof.1218858994804

Nguyễn Lê Phước Thịnh
14 tháng 7 2021 lúc 21:41

1) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được: 

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

Ngọc Anh
Xem chi tiết
My Tran
22 tháng 7 2018 lúc 13:36

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

Không Tên
22 tháng 7 2018 lúc 20:37

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

nguyễn phạm khánh linh
Xem chi tiết