Cho tam giác ABC nhọn , đường cao AH .Gọi M ;N ; Elần lượt là trung điểm các cạnh AB ,AC, BC .
a) BMNE là hình gì ? vì sao ?
b) so sánh MH và NE
c) bt AB=5cm,BC=8cm.tính s HENM
Cho tam giác ABC nhọn gọi AH,BI,CK là 3 đường cao. C/m tam giác AIK đồng dạng tam giác ABC
Ban đầu xét tam giác AIB và tam giác AKC có :
góc BAC chung ; góc AKC= góc AIB =90 độ (g)
Do vậy tam giác AIB đồng dạng tam giác AKC (g-g)
=> AI/AB=AK/AC (1)
Xét tam giác AIK và tam giác ABC có :
góc BAC chung ; AI/AB=AK/AC (theo (1))
Do vậy tam giác AIK đồng dạng tam giác ABC (c-g-c)
xét tam giác AIB và tam giác AKC có :
góc BAC chung ; góc AKC= góc AIB =90 độ (g)
Do vậy tam giác AIB đồng dạng tam giác AKC (g-g)
=> AI/AB=AK/AC (1)
Xét tam giác AIK và tam giác ABC có :
góc BAC chung ; AI/AB=AK/AC (theo (1))
Do vậy tam giác AIK đồng dạng tam giác ABC (c-g-c)
Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu của H lên AB và AC
a.AM.AB=AN.AC
b.Chứng minh tam giác AMN đồng dạng tam giác ACB
Lời giải:
a. Áp dụng hệ thức lượng trong tam giác vuông:
$AM.AB=AH^2$
$AN.AC=AH^2$
$\Rightarrow AM.AB=AN.AC$ (đpcm)
b.
Vì $AM.AB=AN.AC\Rightarrow \frac{AM}{AN}=\frac{AC}{AB}$
Xét tam giác $AMN$ và $ACB$ có:
$\widehat{A}$ chung
$\frac{AM}{AN}=\frac{AC}{AB}$ (cmt)
$\Rightarrow \triangle AMN\sim \triangle ACB$ (c.g.c)
Ta có đpcm.
cho tam giác nhọn ABC đường cao AH. gọi M, N, P là trung điểm AB, AC, BC. tứ giác MNPH là hình gì?
Cho tam giác ABCcó3 góc nhọn gọi O là giao điểm của 3 đường cao AH,BK và CE
cho tam giác ABC có 3 góc nhọn gọi O là giao điểm của 3 đường cao AH,BK và CE a) chúng minh OK x OB=OE:OC b) chứng minh tam giác OKE đồng dạng với tam giác OCB c) chúng minnh tam giác BOH đồng dạng với tam giác BCK d) chúng minh BC mũ 2 = BO x BK + CO x CE
CÁC BN ƯƠI GIÚP MK VS SẮP THI R GIÚP MK VS MK LM ĐCUONG CHO MK LỜI GIẢI CHI TIẾT VÀ HÌNH HC GIÚP MK VS
Cho tam giác ABC nhọn đường cao AH. Gọi E là hình chiếu của H lên AB
Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=180^0\)
Do đó: AEHF là tứ giác nội tiếp
hay A,E,H,F cùng thuộc 1 đường tròn
Bài 4: Cho tam giác ABC nhọn ( AB < AC ) . Đường cao AH . Gọi M; P; Q thứ tự là trung điểm của BC ; CA ; AB .
a) Chứng minh PQ là trung trực của AH .
b) Tứ giác MPQH là hình gì?
Bài 6: Cho tam giác ABC vuông tại A, có đường cao AH. Vẽ HE⊥AB; HF⊥AC (E∈AB; F∈AC). Gọi I là trung điểm của BC.
a) Chứng minh rằng: EF = AH.
b) AI ⊥ EF.
c) Gọi M là trung điểm của HB, N là trung điểm của HC. Chứng minh rằng EMNF là hình thang vuông.
Cho ∆ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu của H đến AB, AC. C/m: hai tam giác AMN và ACB đồng dạng
Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
hay \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Xét ΔAMN và ΔACB có
\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
\(\widehat{MAN}\) chung
Do đó: ΔAMN\(\sim\)ΔACB
cho tam giác ABC nhọn, đường cao AH, gọi M, N lần lượt là hình chiếu của H trên AB, AC. Chứng minh MN= AH.sinA
cho tam giác ABC nhọn (AB<AC), đường cao AH. Gọi M,N,P,I lần lượt là trung điểm của AB,AC,BC,AH. Biết HC=6cm, tính độ dài đoạn IN
Xét ΔAHC có
I là trung điểm của AH
N là trung điểm của AC
DO đó: IN là đường trung bình của ΔAHC
Suy ra: \(IH=3cm\)
Cho tam giác ABC nhọn đường cao ah .Gọi M ,N ,Elần lượt là trung điểm các cạnh AB ,AC, BC .BM E là hình gì ?vì sao?
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BE và MN=BE
hay MNEB là hình bình hành