Cho tam giác ABC có AB=AC.Kẻ BD vuông góc AC;CE vuông góc AB (D thuộc AC;E thuộc AB).gọi O là giao điểm của BD và CE
Chứng minh
a, BD=CE
b, Tam giác OEB bằng tam giác ODC
c,AO là tia phân giác của góc BAC
Các bạn vẽ hình hộ mình với
Cho tam giác ABC có AB=AC.Kẻ bd vuông góc với AC(D thuộc AC),CE vuông góc AB .Gọi O là giao điểm của BD và CE.Chứng minh:
a) BD =CE
b) Tam giác OEB =ODC
c) AO là phân giác của góc BAC
c)Xét tam giác OED và ODC có:
góc OED=ODC(=90)(1)
góc EOB=DOC(đối đỉnh)(3). do đó góc EBO = DCO( theo định kí tổng 3 góc của tam giác)(2)
Từ 1,2,3 => tam giác OEB=ODC(định lí 2 tam giác bằng nhau)=> OB=OC(*)
Xét tam giác OAB và OAC có
AB=AC
OA chung
OB=OC(theo *)
Do đó tam giác OAB=OAC=> góc OAB = OAC=> OA là phân giác của góc BAC
cho tam giác abc có ab =ac.kẻ bd vuông góc với ac,kẻ ce vuông góc với ab (d thuộc ac,e thuộc ab.gọi o là giao điểm của bd và ce 1 cm:bd=ce 2 cm:tam giác oeb =tam giác odc 3 cm:ao là tia phân giác của góc bac
Cho tam giác nhọn ABC có AB=AC.Kẻ BD vuông góc AC tại D,kẻ CE vuông góc AB tại E.Gọi I là giao điểm của BD và CE.CMR:
A)Tam giác ABD=Tam giác ACE
B)EI=DI
C)AI vuông góc BC
a, xét tam giác ABD và tam giác ACE có góc A chung
AB = AC (gt)
góc ADB = góc AEC = 90
=> tam giác ABD = tam giác ACE (ch-gn)
b, tam giác abd = tam giác ACE (câu a)
=> góc ABD = góc ACE (Đn)
AB = AC (gt) => tam giác ABC cân tại A (Đn) => góc ABC = góc ACB
có ABD + góc DBC = góc ABC
góc ACE + góc ECB = góc ACB
=> góc DBC = góc ECB
=> Tam giác IBC cân tại I
=> IB = IC
xét tam giác EIB và tam giác DIC có : góc EIB = góc DIC (đối đỉnh)
góc BEC = góc CDB = 90
=> tam giác EIB = tam giác DIC (ch-gn)
=> EI = ID (đn)
cho tam giác ABC có AB=AC.Kẻ BD vuông góc với AC,CE vuông góc với AB ( D thuộc AC,Ethuộc AB) . Gọi O là giao điểm của BD
và CE. Chứng minh:
a) BD=CE
b)tam giác OEB=tam giác ODC
c)OA là phân giác của góc BAC
cho tam giác ABC có 3 góc nhọn và AB<AC.Kẻ BD vuông góc với AC và CE vuông góc với AB.BD cắt CE tại I.Chứng minh CE>BD
giải bài tam giác ABC,AB=AC.Kẻ BD vuông góc với AC,CE vuông góc với AB (D thuộc AC;E thuộc AB).Gọi O là giao điểm của BD và CE.Chứng minh: a)BD=CE b)tam giác OEB = tam giác ODC c)AO là tia phân giác của góc BAC
Ta có AB=AC
=> △ABC cân tại A => góc ABc=góc ACB hay góc FBC=góc ECB
ta có BE⊥AC=> góc CEB=90 độ
CF⊥AB => góc BFC = 90 độ
Xét △BFC (góc BFC = 90 độ)và△CEB(góc CEB= 90 độ )có
góc FBC =góc ECB (chứng minh trên )
BC là cạnh huyền chung
=> △BFC= △CEB(cạnh huyền -góc nhọn)
Vậy △BFC= △CEB
Cho tam giác nhọn ABC có AB=AC.Kẻ BD vuông góc với AC (D thuộc AC), CE vuông góc với AB (E thuộc AB), BD cắt CE tại I
a,CM:Tam giác AEC = Tam giác ADB
b, CM:IB=IC
c,Qua E kẻ EH vuông góc với BC (H thuộc BC).CM:EH song song với AI
cho tam giác ABC có AB=AC.kẻ BD vuông góc với AC , CE vuông góc với AB ( D thuộc AC,E thuộc AB).gọi O là giao điểm của BD và CE.Chứng minh
a) BD= CE
b, tam giác OEB= tam giác ODC
c, AO là tia phân giác của góc BAC
ai nhanh mk tick ( vẽ hình luôn nha )
mk đang cần gấp
Hình minh họa:
Bài Làm:
a) Xét ΔBCE vuông tại E và ΔCBD vuông tại D có:
BC: chung
EBCˆ=DCBˆ(gt)EBC^=DCB^(gt)
=> ΔBCE=ΔCBD(ch−gn)ΔBCE=ΔCBD(ch−gn)
=> CE = BD (đpcm)
b) tg BCE = tg CBD
=> BE = CD (1)
và DBCˆ=ECBˆDBC^=ECB^
Ta có: DBCˆ+B1ˆ=EBCˆDBC^+B1^=EBC^; ECBˆ+C1ˆ=DCBˆECB^+C1^=DCB^
mà {DBCˆ=ECBˆ(cmt)EBCˆ=DCBˆ(gt) => B1ˆ=C1ˆB1^=C1^ (2)
Từ (1), (2) => ΔOEB=ΔODC(cgv-gnk) (đpcm)
c) Xét ΔABOΔABO và ΔACOΔACO có:
AB = AC (gt)
AO: chung
BO = CO (tg OEB = tg ODC)
=> ΔABO=ΔACO(c−c−c)
=> BAOˆ=CAOˆ mà O nằm trong tam giác ABC
=> AO là tia p/g của góc BAC (đpcm)
a ) Xét tam giác ABD và tam giác ACE có :
A là góc chung
AB = AC ( gt)
góc D = góc E = 90 độ ( gt )
Vậy tam giác ABD = tam giác ACE ( cạnh huyền góc nhọn )
=> BD = CE ( 2 cạnh tương ứng )
b ) Ta có : góc D = góc E = 90 độ ( gt ) (1)
Ta có : AB = AC ( gt )
AE = AD ( do tam giác ABD = tam giác ACE )
=> BE = CD (2)
Ta có : góc EBO = góc DCO ( do tam giác ABD = tam giác ACE ) (3)
Từ (1) , (2) , (3) => Tam giác OEB = Tam giác ODC
c ) Xét tam giác ABO và tam giác ACO có :
AB = AC ( gt )
AO chung
BO = CO ( Tam giác OEB = Tam giác ODC )
=> Tam giác ABO = tam giác ACO ( c.c.c )
=> Góc BAO = góc CAO ( 2 góc tương ứng )
=> AO là tia phân giác của góc BAC ( đpcm )
Cho tam giác ABC có AB=AC.kẻ BD vuông góc AC tại D,CE vuông góc với AB tại E.BD và CE cắt nhau tại K.Qua B kẻ Bx vuông góc AB,qua C kẻ Cy vuông góc AC.Bx và Cy cắt nhau tại M.Cm A,K,M thẳng hàng
Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
⇒AD=AE(hai cạnh tương ứng)
Ta có: AE+EB=AB(E nằm giữa A và B)
AD+DC=AC(D nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và AD=AE(cmt)
nên EB=DC
Ta có: ΔABD=ΔACE(cmt)
nên \(\widehat{ABD}=\widehat{ACE}\)(hai góc tương ứng)
hay \(\widehat{EBK}=\widehat{DCK}\)
Xét ΔEBK vuông tại E và ΔDCK vuông tại D có
EB=DC(cmt)
\(\widehat{EBK}=\widehat{DCK}\)(cmt)
Do đó: ΔEBK=ΔDCK(cạnh góc vuông-góc nhọn kề)
⇒BK=CK(hai cạnh tương ứng)
Ta có: \(\widehat{ABC}+\widehat{MBC}=\widehat{ABM}\)(tia BC nằm giữa hai tia BA,BM)
\(\widehat{ACB}+\widehat{MCB}=\widehat{ACM}\)(tia CB nằm giữa hai tia CA,CM)
mà \(\widehat{ABM}=\widehat{ACM}\left(=90^0\right)\)
và \(\widehat{ABC}=\widehat{ACB}\)(Hai góc ở đáy trong ΔABC cân tại A)
nên \(\widehat{MBC}=\widehat{MCB}\)
Xét ΔMBC có \(\widehat{MBC}=\widehat{MCB}\)(cmt)
nên ΔMBC cân tại M(Định lí đảo của tam giác cân)
⇒MB=MC
Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: KB=KC(cmt)
nên K nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Ta có: MB=MC(cmt)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)
Từ (1), (2) và (3) suy ra A,K,M thẳng hàng(đpcm)