cho tam giác ABC vuông tại A vẽ đường phân giác BD;DH vuông BC
câu a Chứng minh tam giác ABD=tam giác HBD
câu b trên tai đổi AB lấy điểm K sao cho Ak=Hc chứng minh tam giác DKC cân
Cho tam giác ABC vuông tại A có BD là đường phân giác. Từ D vẽ DH vuông góc với BC
a, Chứng minh BD vuông góc với AH
b, Đường phân giác CE của tam giác ABC cắt BD tại I. Tính số đo góc DIE
Giúp mình với mọi người, mình cũng đang bí bài này !!!
cho tam giác ABC vuông tại A đường phân giác BD vẽ DH cắtBC
chứng minh
a tam giác ABD = tam giác HBD
b bd là đường trung trực của AH
Cho tam giác ABC vuông tại A ( AB<AC) đường cao AH
a/ Chứng minh tam giác BHA đồng dạng tam giác BAC
b/ Vẽ BD là đường phân giác của góc tam giác ABC cắt AH tại K. Chứng minh : BA.BK = BD.BH
c/ Qua C kẻ đường thẳng vuông góc với BD tại E. Chứng minh AE = EC
Cho tam giác ABC vuông tại A, tia phân giác góc ABC cắt đường thẳng AC tại D. Vẽ DE vuông góc với BC tại E. a) CMR tam giác ABD = tam giác EBD. Chứng minh BD là đường trung trực của đoạn thẳng AE. c) Đường thẳng BD cắt đường thẳng AE tại điểm I . Trên tia đối của tia EI lấy điểm N sao cho EI=EN . Trên tia đối của tia AB lấy điểm M sao cho A là trung điểm của BM . Chứng minh MI đi qua trung điểm của đoạn thẳng BN Các cậu giúp tớ với :( yêu cầu vẽ hình và giải bài ) Giúp tớ , tớ cần gấp ạ
a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=goc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: Xét ΔBMN có
NA là trung tuýen
NI=2/3NA
=>I là trọng tâm
=>MI đi qua trung điểm của BN
Cho Tam giác ABC vuông tại A(AB<AC) có đường cao ah.a chứng minh Tam giác BAH đồng dạng với Tam giác BCA.b vẽ BD là đường phân giác của Tam giác ABC cắt AH tại k. Chứng minh BA.BK=BD.BH.c qua C kẻ đường thẳng vuông góc với BD tại E. Chứng minh AE=EC. Giúp mình với mình cảm ơn nhiều
a) Xét ΔBAH vuông tại H và ΔBCA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔBAH\(\sim\)ΔBCA(g-g)
Cho tam giác ABC vuông tại A, AH là đường cao. Vẽ BD là đường phân giác của tam giác ABC cắt AH tại K. Qua C kẻ đường thẳng vuông góc BD tại E. Kéo dài đường thẳng BA và CE cắt nhau tại M. MD cắt BC tại I. Chứng minh EB là tia phân giác IEA.
Bài 1: Cho tam giác ABC vuông tại A. Vẽ đường phân giác BD ( D thuộc AC ). Kẻ AE vuông góc BD ( E thuộc BD ). Đường thẳng AE cắt BC tại K.
a) CM: tam giác BAK cân.
b) Cho DC =10cm, KC = 8cm. Tính DK.
c) Vẽ tia Ax so cho AK là tia phân giác góc CAx, tia Ax cắt BD tại I. Chứng minh KI vuông góc AB.
cho tam giác ABC vuông tại A (AC>AB) có đường phân giác BD, đường trung tuyến AM. Từ C vẽ đường thẳng vuông góc BD tại E. Chứng minh ME vuông góc AC
Xét \(\Delta\)vuông BCE có M là trung điểm BC\(\Rightarrow BM=CM=EM=\frac{BC}{2}\)
Xét \(\Delta BME\)có BM=EM\(\Rightarrow\Delta BME\)cân tại M\(\Rightarrow\widehat{EBM}=\widehat{BEM}\)(1)
Vì BD là p/g \(\widehat{ABC}\Rightarrow\widehat{ABD}=\widehat{EBM}\)(2)
Từ (1)(2)\(\Rightarrow\widehat{BEM}=\widehat{ABD}\)Mà 2 góc này này nằm ở vị trí so le trong của 2 đường thẳng AB và ME\(\Rightarrow AB//ME\)(3)
Do \(\Delta ABC\)vuông tại A\(\Rightarrow AB\perp AC\)(4)
Từ (3)(4)\(\Rightarrow ME\perp AC\)
Cho tam giác ABC vuông tại A Vẽ đường cao AH đường phân giác BD cắt ah tại E Chứng minh EH/EA=DA/DC
Lời giải:
Do $BE$ là phân giác $\widehat{ABH}$ nên theo tính chất tia phân giác ta có:
$\frac{EH}{EA}=\frac{BH}{BA}(1)$
Xét tam giác $BAH$ và $BCA$ có:
$\widehat{B}$ chung
$\widehat{BHA}=\widehat{BAC}=90^0$
$\Rightarrow \triangle BAH\sim \triangle BCA$ (g.g)
$\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}(2)$
Do $BD$ là phân giác $\widehat{BAC}$ nên:
$\frac{AD}{DC}=\frac{BA}{BC}(3)$
Từ $(1); (2); (3)\Rightarrow \frac{EH}{EA}=\frac{DA}{DC}$ (đpcm)
Cho tam giác ABC vuông tại A, có AB/BC = 4/5; AC=18cm. Vẽ đường phân giác BD của tam giác ABC. trên cạnh AB lấy H sao cho AH/AB=1/3, từ B vẽ đường thẳng vuông góc với HC tại E, đường thẳng BE cắt AC tại F.
a)Tính AD, DC
B)Chứng minh tam giác HAC đồng dạng tam giác HEB
c)Chứng minh AF.AC=1/3AB2
d)Trên tia đối của tia FA, lấy M sao cho FM=2FA.
Chứng minh MB vuông góc BC
Chỉ dùng kiến thức lớp 8, em cảm ơn
a) Ta có: \(\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(AB=\dfrac{4}{5}BC\)
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC=30\left(cm\right)\)
\(\Leftrightarrow AB=\dfrac{4}{5}\cdot BC=\dfrac{4}{5}\cdot30=24\left(cm\right)\)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
hay \(\dfrac{AD}{24}=\dfrac{CD}{30}\)
mà AD+CD=AC=18cm(gt)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{24}=\dfrac{CD}{30}=\dfrac{AD+CD}{24+30}=\dfrac{18}{54}=\dfrac{1}{3}\)
Do đó:
\(\left\{{}\begin{matrix}AD=\dfrac{1}{3}\cdot24=8\left(cm\right)\\CD=\dfrac{1}{3}\cdot30=10\left(cm\right)\end{matrix}\right.\)
Vậy: AD=8cm; CD=10cm
b) Xét ΔHAC vuông tại A và ΔHEB vuông tại E có
\(\widehat{AHC}=\widehat{EHB}\)(hai góc đối đỉnh)
Do đó: ΔHAC\(\sim\)ΔHEB(g-g)
c) Xét ΔAFB vuông tại A và ΔAHC vuông tại A có
\(\widehat{ABF}=\widehat{ACH}\left(=90^0-\widehat{AFB}\right)\)
Do đó: ΔAFB\(\sim\)ΔAHC(g-g)
Suy ra: \(\dfrac{AF}{AH}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AF\cdot AC=AB\cdot AH=AB\cdot\dfrac{1}{3}AB=\dfrac{1}{3}AB^2\)(đpcm)