Cho △ABC có B=2C phân giác trong của BC. Biết AB=3cm; BC=4cm. tính AD
Bài 2. (2 điểm)
a) Tính độ dài x trong hình vẽ (Biết DE // BC )
b. Cho tam giác ABC có AB = 2cm, AC = 3cm, BC = 4 cm, phân giác AD. Tính độ dài của BD và CD.
a | Áp dụng hệ quả của định lý Ta-lét ta có: |
b | Ta có: |
a | Áp dụng hệ quả của định lý Ta-lét ta có: |
b | Ta có: |
Cho tam giác ABC có AD là đường phân giác của góc A (D chia hết BC) biết AB=5 cm, AC=8,5 cm, BD=3cm. Tính BC
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>CD/8,5=3/5
hay CD=5,1(cm)
=>BC=13,6(cm)
Ta có :
AD là đường phân giác của \(\widehat{BAC}\)
=> \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
=> \(\dfrac{5}{8,5}=\dfrac{3}{CD}\)
=> CD = 5,1 (cm)
Ta có : BC = BD + CD
=> BD = 3 + 5,1
=> BD = 8,1 (cm)
Cho tam giác ABC vuông ở B có AB = 3cm, BC= 4CM . tia phân giác của góc ABC cắt AC tại I. Tính IA, IC ?
Lời giải:
Áp dụng định lý Pitago: $AC=\sqrt{AB^2+BC^2}=\sqrt{3^2+4^2}=5$ (cm)
Áp dụng tính chất tia phân giác:
$\frac{IA}{IC}=\frac{AB}{BC}=\frac{3}{4}$
Mà $IA+IC=AC=5$
$\Rightarrow IA=5:(3+4).3=\frac{15}{7}; IC=5:(3+4).4=\frac{20}{7}$ (cm)
a,Vẽ tam giác ABC có BC=2cm,AB=AC=3cm.
b,Gọi E là trung điểm của cạnh BC của tam giác ABC trong câu a.CMR AE là tia phân giác của góc BAC
a) Vẽ tam giác ABC có BC=2cm, AB=AC=3cm
b) Gọi E là trung điểm của BC của tam giác ABC trong câu a. Chứng minh rằng AE là tia phân giác của góc BAC
Bài làm
Vì E là trung điểm của BC
=> EB=EC=\(\frac{2}{2}=1\)cm
Xét tam gíc ABE và tam giác ACE
Ta có: AC=AC ( gt )
BE=EC ( chứng minh trên )
AE là cạnh chung
=> tam giác ABE= tam giác ACE ( c.c.c )
Vì tam giác ABE bằng tam giác ACE ( chứng minh trên )
=> BE=EC ( chứng minh trên )
AE là cạnh chung
=> \(\widehat{BAE}=\widehat{EAC}\)
=> AE là tia phân giác của góc \(\widehat{BAC}\) (đpcm)
# Chúc bạn học tốt #
~ Mik lm quen vs dạng này nhiều rồi, nên k sợ sai đâu. ~
Cho tam giác ABC vuông tại A,biết AB=3cm,BC=5cm.Đường phân giác ngoài của góc B cắt AC tại N.Khi đó AN=....cm
a) Vẽ tam giác ABC có BC = 2cm, AB = AC = 3cm
b) Gọi E là trung điểm của cạnh BC của tam giác ABC trong câu a). Chứng minh rằng AE là tia phân giác của góc BAC ?
b) Xét tam giác ABE và tam giác ACE có :
AB=AC
BE=CE
AE chung
=> tam giác ABE=tam giác ACE (C-C-C)
=> Â1=Â2 (2 góc tương ứng)
=> AE là tia phân giác của góc BAC
\(\Delta BAE=\Delta CAE\left(c.c.c\right)\) suy ra \(\widehat{BAE}=\widehat{CAE}\)
cho tam giác ABC có BD là đường phân giác biết AC=8cm BC=10cm và AD=3cm độ dài AB=?
\(DC=AC-AD=8-3=5cm\)
Áp dụng tính chất đường phân giác trong tam giác, ta có:
\(\dfrac{AB}{AD}=\dfrac{BC}{DC}\Leftrightarrow\dfrac{AB}{3}=\dfrac{10}{5}=2\)
\(\Rightarrow AB=2\times3=6cm\)
Có: AC=AD+DC
=> DC=AC-AD=8-3=5cm
Xét \(\Delta ABC\) có: BD là phân giác
=> \(\dfrac{AD}{AB}=\dfrac{DC}{BC}\Leftrightarrow\dfrac{3}{AB}=\dfrac{5}{10}\Rightarrow AB=3.\dfrac{10}{5}=6\left(cm\right)\)
Cho tam giác ABC vuông tại góc A có B=2C, AB=3cm. Vẽ đường cao AH (H thuộc AB)
a)CM: tam giác HBA đồng dạng với tam giác ABC
b)Kẻ tia phân giác của góc ABC cắt AH tại D cắt AC tại E. CM:AB2=AE.AC
c)CM: tam giác BHD đồng dạng với tam giác BAE rồi suy ra tỉ số diện tích hai tam giác BHD và BAE
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc HBA chung
=>ΔHBA đồng dạng với ΔABC
b; Xét ΔABE vuông tại A và ΔACB vuông tại A có
góc ABE=góc ACB
=>ΔABE đồng dạng với ΔACB
=>AB/AC=AE/AB
=>AB^2=AE*AC
c: Xét ΔBHD vuông tại H và ΔBAE vuông tại A có
góc HBD=góc ABE
=>ΔBHD đồng dạng với ΔBAE