so sánh Avà B :
a)A=\(\frac{n}{n+1}\);B=\(\frac{n+2}{n+3}\)
b)A=\(\frac{n}{2n+1}\);B=\(\frac{3n+1}{6n+3}\)
c)A=\(\frac{10^7+5}{10^7-8}\);B=\(\frac{10^8+6}{10^8-7}\)
d)A=\(\frac{10^{1992}+1}{10^{1991}+1}\);B=\(\frac{10^{1993}+1}{10^{1992}+1}\)
So sánh Avà B:
\(A=\frac{10^{15}+1}{10^{16}+1};B=\frac{10^{16}+1}{10^{17}+1}\)
Ta có:
10A=1016+10/1016+1=1+(9/1016+1)
10B=1017+10/1017+1=1+(9/1017+1)
Vì 9/1016+1 > 9/1017+1 nên 10A>10B,do đó A>B
So sánh Avà B biết; A=(1/80)^7 và (1/243)^6=B
so sánh Avà B, biết:
A=\(\frac{10^{2012}+1}{10^{2013}+1}\) và B=\(\frac{10^{2013}+1}{10^{2014}+1}\)
m.n giải rõ cho mình nhé, mình c.ơn
vì B<1 => \(B=\frac{10^{2013}+1}{10^{2014}+1}< \frac{10^{2013}+1+9}{10^{2014}+1+9}=\)\(\frac{10^{2013}+10}{10^{2014}+10}=\frac{10\left(10^{2012}+1\right)}{10\left(10^{2013}+1\right)}\)\(=\frac{10^{2012}+1}{10^{2013}+1}=A\)
\(\Rightarrow A>B\)
\(\frac{10^{2012}+1}{10^{2013}+1}=\frac{\left(10^{2012}+1\right)\cdot10}{\left(10^{2013}+1\right)\cdot10}=\frac{10^{2013}+10}{\left(10^{2013}+1\right)\cdot10}=\frac{10^{2013}+1+9}{\left(10^{2013}+1\right)\cdot10}=\frac{10^{2013}+1}{\left(10^{2013}+1\right)\cdot10}+\frac{9}{\left(10^{2013}+1\right)\cdot10}=\frac{1}{10}+\frac{9}{\left(10^{2013}+1\right)\cdot10}\left(1\right)\)
\(\frac{10^{2013}+1}{10^{2014}+1}=\frac{\left(10^{2013}+1\right)\cdot10}{\left(10^{2014}+1\right)\cdot10}=\frac{10^{2014}+10}{\left(10^{2014}+1\right)\cdot10}=\frac{10^{2014}+1+9}{\left(10^{2014}+1\right)\cdot10}=\frac{10^{2014}+1}{\left(10^{2014}+1\right)\cdot10}+\frac{9}{\left(10^{2014}+1\right)\cdot10}=\frac{1}{10}+\frac{9}{\left(10^{2014}+1\right)\cdot10}\left(2\right)\)Từ (1)(2) => A > B
So sánh Avà B A=378^11-1/457^12-1 B=378^11+1/457^12+1
a. cho a,b,n là các số tự nhiên Hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b.Hãy so sánh A= \(\frac{10^{11}-1}{10^{12}-1}\);B= \(\frac{10^{10}+1}{10^{11}+1}\)so sánh A và B
so sánh Avà B biết
A=\(\frac{5555555553}{5555555557}\)
B=\(\frac{6666666664}{6666666669}\)
Hính như đề sai, nếu vậy ko thể so sánh phàn bù đơn vị được
so sánh Avà B
A= 10^2007/10^2008 +1 và B=10^2008/10^2009+1
nhân cả tử và mẫu của a cho 10 ta được A=10^2008/10^2009 (nhân cả tử và mẫu cho 1 số thì giá trị của A vẫn k đổi em nhé)
so sánh A=10^2008/10^2009 với B=10^2008/10^2009 vì cùng tử và 2 mẫu bằng nhau nên A=B
1)a)Cho a,b,n thuộc N*.Hãy so sánh \(\frac{a+n}{b+n}\)và\(\frac{a}{b}\)b)Cho A=\(\frac{10^{11}-1}{10^{12}-1}\);B=\(\frac{10^{10}+1}{10^{11+1}}\).So sánh A và B.
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{n + 1}}{n},\;\forall \;n\; \in {N^*}\)
a) So sánh \({u_n}\) và 1.
b) So sánh \({u_n}\) và 2.
a) \({u_n} = \frac{{n + 1}}{n}= 1+ \frac{{1}}{n} > 1\).
b) \({u_n} = \frac{{n + 1}}{n}= 1+ \frac{{1}}{n} < 2\).