Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 2 2017 lúc 8:42

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Cách dựng:

- Dựng ∆ BHC, BH = 2,5 cm

- ∠ (BHC) = 90 0

- Trên tia Hx lấy điểm C sao cho BC = 3cm

- Dựng tia đi qua B và song song CH nằm trên nửa mặt phẳng bờ BC chứa điểm H. Lấy điểm A sao cho BA = 2cm

- Dựng cung tròn tâm B bán kính bằng AC cắt tia CH tại D.

Nối AD ta có hình thang ABCD cần dựng.

Chứng minh: Thật vậy theo cách dựng AB // CD nên tứ giác ABCD là hình thang có AB = 2cm, BC = 3cm, BH = 2,5cm.

AC = BD

Vậy ABCD là hình thang cân thỏa mãn điều kiện bài toán.

nguyen dinh hoa
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 12 2019 lúc 18:23

a) Ta có: AB = AD = CD/2 và M là trung điểm của CD (gt)

⇔ AB = DM và AB // DM

Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.

b) M là trung điểm của CD nên BM là trung tuyến của ΔBDC mà MB = MD = MC. Do đó ΔBDC là tam giác vuông tại B hay DB ⊥ BC

c) ABMD là hình thoi (cmt) ⇔ ∠D1 = ∠D2

Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)

d) Ta có :

Xét tam giác vuông AHB, ta có :

Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)

⇒ BC = AM = 3 (cm)

Ta có:

M là trung điểm của DC nên

SBMD = SBMC = SBCD/2 = 3 (cm2) (chung đường cao kẻ từ B và MD = MC)

Mặt khác ΔABD = ΔMDB (ABCD là hình thoi)

⇔ SABD = SBMD = 3 (cm2)

Vậy SABCD = SABD + SBMD + SBMC = 9 (cm2)

Địt mẹ mày
5 tháng 2 2021 lúc 14:11

Mày N Mày Chết M Mày Đi Kêu Cặk

Đại Nguyễn Đình
Xem chi tiết
Đặng Việt Hiếu
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 3 2022 lúc 21:44

a: Xét ΔADB và ΔBCD có 

\(\widehat{BAD}=\widehat{DBC}\)

\(\widehat{ABD}=\widehat{BDC}\)

Do đó: ΔADB\(\sim\)ΔBCD
b: ta có:ΔADB\(\sim\)ΔBCD

nên AD/BC=AB/BD

=>2,5/BC=1/2

hay BC=5(cm)

Thảo Hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 7 2023 lúc 20:50

a: Xét ΔADB và ΔBCD có

góc DAB=góc CBD

góc ABD=góc BDC

=>ΔADB đồng dạng với ΔBCD

b: ΔADB đồng dạng với ΔBCD

=>AD/BC=DB/CD=AB/BD

=>3,5/BC=5/CD=2,5/5=1/2

=>BC=7cm; CD=10cm

 

D.Khánh Đỗ
Xem chi tiết
Huyền Trân
Xem chi tiết
Kudo Shinichi
18 tháng 9 2019 lúc 20:04

A B C D M H 1 2 4

a ) Ta có : \(AB=AD=\frac{CD}{2}\)    và M là trung điểm của CD (gt)

\(\Leftrightarrow AB=DM\) và AB // DM 

Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.

b) M là trung điểm của CD nên BM là trung tuyến của \(\Delta BDC\) mà MB = MD = MC.

Do đó \(\Delta BDC\) là tam giác vuông tại B hay \(DB\perp BC\)

c) ABMD là hình thoi (cmt)  \(\Leftrightarrow\widehat{D}_1=\widehat{D}_2\) 

Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)

d) Ta có :

\(HB=HD=\frac{1}{2}BD=\frac{1}{2}.4=2\left(cm\right)\)

Xét tam giác vuông AHB, ta có :

\(AH=\sqrt{AB^2-HB^2}\) ( định lí Pitago )

          \(=\sqrt{2,5^2-2^2}=1,5\left(cm\right)\)

\(\Rightarrow AM=3\left(cm\right)\)

Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)

\(\Rightarrow BC=AM=3\left(cm\right)\)

Ta có :

\(S_{BDC}=\frac{1}{2}BD.BC=\frac{1}{2}.4.3=6\left(cm^2\right)\)

M là trung điểm của DC nên

\(S_{BMD}=S_{BMC}=\frac{S_{BCD}}{2}=3\left(cm^2\right)\) 

(chung đường cao kẻ từ B và MD = MC)

Mặt khác \(\Delta ABD=\Delta MDB\) ( ABCD là hình thoi )

\(\Leftrightarrow S_{ABD}=S_{BMD}=3\left(cm^2\right)\)

Vậy \(S_{ABCD}=S_{ABD}+S_{BMD}+S_{BMC}=9\left(cm^2\right)\)

Chúc bạn học tốt !!!

Địt mẹ mày
5 tháng 2 2021 lúc 14:13

Buồi

Hồng
Xem chi tiết
Phong Thần
24 tháng 4 2021 lúc 12:00

a) Xét 2 tam giác ADB và BCD có:

góc DAB = góc DBC (gt)

góc ABD = góc BDC ( so le trong )

nên tam giác ADB đồng dạng với tam giác BDC.(1)

b) Từ (1) ta có AB/BC = DB/CD = AB/BD

hay AD/BC = AB/BD ⇔ 3,5/BC = 2,5/5

➩ BC= 3,5 . 5/2,5 = 7 (cm)

ta lại có: DB/CD = AB/BD ⇔ 5/CD = 2,5/5

==> CD = 5.5/2,5 =10 (cm)

c) Từ (1) ta được:

AD/BC = DB/CD = AB/BD

hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .

ta nói tam giác ADB đồng dạng với tam giác BCD theo tỉ số đồng dạng là 1/2

mà tỉ số diện tích bằng bình phương tỉ số động dạng

do đó S ADB/ S BCD = (1/2)2 = 1/4

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 7 2018 lúc 5:37

Vì △ ABD ∼  △ BDC nên: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Với AB = 2,5cm; AD = 3,5cm; BD = 5cm, ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8