trong mặt phẳng tọa độ Oxy cho đường tròn (C): (x-1)^2+(y-1)^2 =25 và các điểm A(7;9), B(0;8). Tìm tọa độ điểm M thuộc (C) sao cho P=Ma+2MB đạt giá trị nhỏ nhất
trong mặt phẳng tọa độ Oxy cho đường tròn (C): (x-1)^2+(y-1)^2 =25 và các điểm A(7;9), B(0;8). Tìm tọa độ điểm M thuộc (C) sao cho P=Ma+2MB đạt giá trị nhỏ nhất
Trong mặt phẳng tọa độ Oxy cho điểm A(9,0) và đường tròn (C): ( x - 2 ) 2 + ( y - 1 ) 2 = 25 . Gọi ∆1;∆2 là hai tiếp tuyến của (C) đi qua A. Tính tổng khoảng cách từ O đến hai đường thẳng ∆1;∆2.
A. 36/5.
B. 37/5.
C. 73/5.
D. 63/5.
Trong mặt phẳng tọa độ Oxy cho điểm A(9,0) và đường tròn (C): x - 2 2 + y - 1 2 = 25 . Gọi ∆1;∆2 là hai tiếp tuyến của (C) đi qua A. Tính tổng khoảng cách từ O đến hai đường thẳng ∆1;∆2.
A. 36 5
B. 37 5
C. 73 5
D. 63 5
Chọn D
Tổng khoảng cách từ O đến hai tiếp tuyến bằng
Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A (-1;1) và đường thẳng
d : x - y + 1 - √2 = 0 . Viết phương trình đường tròn (C) đi qua điểm A, gốc toạ độ O và tiếp xúc với đường thẳng d .
Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A (-1;1) và đường thẳng
d : x - y + 1 - √2 = 0 . Viết phương trình đường tròn (C) đi qua điểm A, gốc toạ độ O và tiếp xúc với đường thẳng d .
Gọi \(I\) là tâm nằm trên đường trung trực \(OA\)
\(\Rightarrow IA=d\left(I,d\right)\Leftrightarrow\sqrt{\left(x_0+1\right)^2+x^2_0}=\dfrac{\left|-x_0+x_0+1-1\right|}{\sqrt{2}}\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=-1\end{matrix}\right.\)
Khi đó: \(\left\{{}\begin{matrix}x_0=0\Rightarrow r=1\\x_0=-1\Rightarrow r=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+\left(y-1\right)^2=1\\\left(x+1\right)^2+y^2=1\end{matrix}\right.\)
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) : \(\left(x-1\right)^2+\left(y-2\right)^2=4\) và đường thẳng \(d:a-y-1=0\). Viết phương trình đường tròn (C') đối xứng với đường tròn (C) qua đường thẳng d. Tìm tọa độ các giao điểm của (C) và (C') ?
Trong mặt phẳng hệ tọa độ oxy, cho đường tròn (C):(x-2)2+(y-3)2=100 và đường thẳng denta:3x-4y+1=0.Gọi A,B là hai giao điểm của denta và(C).Tính độ dài đoạn thẳng AB
Đường tròn (C) tâm \(O\left(2;3\right)\) bán kính \(R=10\)
Gọi I là trung điểm AB \(\Rightarrow IO\perp AB\)
\(\Rightarrow IO=d\left(O;AB\right)=\dfrac{\left|3.2-4.3+1\right|}{\sqrt{3^2+4^2}}=1\)
Áp dụng định lý Pitago:
\(IA=\sqrt{OA^2-OA^2}=\sqrt{100-1}=3\sqrt{11}\)
\(\Rightarrow AB=2IA=6\sqrt{11}\)
Trong mặt phẳng tọa độ Oxy, cho điểm M(1;-2) và đường tròn (C): (x-2)2 + y2 =10. Số tiếp tuyến kẻ từ điểm M tới đường tròn (C) là :
A.2 B.1 C.0 D. vô số
Bán kính đường tròn: \(R=\sqrt{10}\)
\(O=\left(2;0\right)\) là tâm đường tròn
\(\Rightarrow OM=\sqrt{\left(1-2\right)^2+\left(-2-0\right)^2}=\sqrt{5}< R=\sqrt{10}\)
\(\Rightarrow M\) nằm trong đường tròn
Kết luận: Số tiếp tuyến kẻ được từ M đến đường tròn (C) là 0.
Trong mặt phẳng Oxy , cho hình bình hành ABCD với A(3;2) ; D(4;1). Biết điểm B di động trên đường tròn (C):(x-2)^2+(y+1)^2=32 điểm C thuộc đường thẳng (d):x+y-1=0 .Biết rằng C có hoành độ dương . Tọa độ điểm C là