Cho A= \(\left[-4;7\right]\), B=\(\left(-\infty;2\right)\). Khi đó \(A\cap B\) là
cho a,b,c là 3 số thực dương thỏa mãn điều kiện a+b+c+\(\sqrt{abc}\)=4.
tính giá trị của biểu thức: A=\(\sqrt{a\left(4-b\right)\left(4-c\right)}+\sqrt{b\left(4-c\right)\left(4-a\right)}+\sqrt{c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}\)
Ta có: \(a+b+c+\sqrt{abc}=4\)
\(\Rightarrow4a+4b+4c+4\sqrt{abc}=16\)
\(\Rightarrow4a+4\sqrt{abc}=16-4b-4c\)
\(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a\left(16-4b-4c+bc\right)}=\sqrt{a\left(4a+4\sqrt{abc}+bc\right)}\)
\(=\sqrt{4a^2+4a\sqrt{abc}+abc}=\sqrt{\left(2a+\sqrt{abc}\right)^2}=\left|2a+\sqrt{abc}\right|=2a+\sqrt{abc}\)
Tương tự:
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{b\left(4-a\right)\left(4-c\right)}=2b+\sqrt{abc}\\\sqrt{c\left(4-a\right)\left(4-b\right)}=2c+\sqrt{abc}\end{matrix}\right.\)
\(\Rightarrow A=\sqrt{a\left(4-b\right)\left(4-c\right)}+\sqrt{b\left(4-c\right)\left(4-a\right)}+\sqrt{c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}=2a+2b+2c+3\sqrt{abc}-\sqrt{abc}=2\left(a+b+c+\sqrt{abc}\right)=8\)
Ta có \(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a\left(a+c+\sqrt{abc}\right)\left(4-c\right)}\)
\(=\sqrt{\left(a^2+ac+a\sqrt{abc}\right)\left(4-c\right)}\\ =\sqrt{4a^2+ac\left(4-\sqrt{abc}-a-c\right)+4a\sqrt{abc}}\\ =\sqrt{4a^2+4a\sqrt{abc}+abc}=\sqrt{\left(2a+\sqrt{abc}\right)^2}\\ =2a+\sqrt{abc}\left(a,b,c>0\right)\)
Cmtt \(\sqrt{b\left(4-c\right)\left(4-a\right)}=2b+\sqrt{abc};\sqrt{c\left(4-b\right)\left(4-a\right)}=2c+\sqrt{abc}\)
\(\Rightarrow A=2\left(a+b+c\right)+3\sqrt{abc}-\sqrt{abc}=2\left(a+b+c\right)+2\sqrt{abc}\\ A=2\left(a+b+c+\sqrt{abc}\right)=2\cdot4=8\)
\(\sqrt{a\left(4-b\right)\left(4-c\right)}+\sqrt{b\left(4-c\right)\left(4-a\right)}+\sqrt{c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}\)
cho \(a+b+c+\sqrt{abc}=4\)
cái này bạn nhân giả thiết với 4 rồi chuyển làm sao để pt thành nhân tử có chứa như cái trong căn ấy
có \(a+b+c+\sqrt{abc}=4\Rightarrow4-b=a+c+\sqrt{abc};\)\(4-a=b+c+\sqrt{abc};\)\(4-c=a+b+\sqrt{abc}\)
\(\Rightarrow\left(4-b\right)\left(4-c\right)=\left(a+c+\sqrt{abc}\right)\left(a+b+\sqrt{abc}\right)\)\(=a^2+ab+ac+bc+2a\sqrt{abc}+b\sqrt{abc}+c\sqrt{abc}\)
\(=a\left(a+b+c+\sqrt{abc}\right)+\sqrt{abc}\left(a+b+c+\sqrt{abc}\right)+bc\)
\(=4a+4\sqrt{abc}+bc\)\(\Rightarrow a\left(4-b\right)\left(4-c\right)=4a^2+4a\sqrt{abc}+abc=\left(2a+\sqrt{abc}\right)^2\)\(\Rightarrow\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{\left(2a+\sqrt{abc}\right)^2}=2a+\sqrt{abc}\)
tương tự \(\sqrt{b\left(4-a\right)\left(4-c\right)}=2b+\sqrt{abc}\)\(;\sqrt{c\left(4-a\right)\left(4-b\right)}=2c+\sqrt{abc}\)
\(\Rightarrow\sqrt{a\left(4-b\right)\left(4-c\right)}+\sqrt{b\left(4-c\right)\left(4-a\right)}+\sqrt{c\left(4-a\right)\left(4-b\right)}\)\(-\sqrt{abc}\)\(=2\left(a+b+c+\sqrt{abc}\right)=2.4=8\)
Cho các số thực dương thoả mãn a+b+c+\(\sqrt{abc}\)=4. Tính giá trị biểu thức A=\(\sqrt[]{a\left(4-b\right)\left(4-c\right)}+\sqrt{b\left(4-c\right)\left(4-a\right)}+\sqrt{c\left(4-b\right)\left(4-a\right)}-\sqrt{abc}\)
Cho a, b,c là ba so thuc duongTMDK: a+b +c +\(\sqrt{abc}\)=4
Tính GT bieu thuc: \(A=\sqrt{a\left(4-b\right)\left(4-c\right)}+\sqrt{b\left(4-a\right)\left(4-c\right)}+\sqrt{c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}\)
Ta co:
\(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a\left(16+bc-4b-4c\right)}\)
\(=\sqrt{a\left(bc+4a+4\sqrt{abc}\right)}=\sqrt{abc+4a^2+4a\sqrt{abc}}\)
\(=\sqrt{\left(2a+\sqrt{abc}\right)^2}=2a+\sqrt{abc}\)
Tương tự ta cũng co:
\(\hept{\begin{cases}\sqrt{b\left(4-a\right)\left(4-c\right)}=2b+\sqrt{abc}\\\sqrt{c\left(4-a\right)\left(4-b\right)}=2c+\sqrt{abc}\end{cases}}\)
\(\Rightarrow A=2\left(a+b+c\right)+3\sqrt{abc}-\sqrt{abc}=2\left(a+b+c+\sqrt{abc}\right)=8\)
cho a,b,c>0 và \(a+b+c+\sqrt{abc}=4\)
tính M=\(\sqrt{a\left(4-b\right)\left(4-c\right)}+\sqrt{b\left(4-a\right)\left(4-c\right)}+\sqrt{c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}\)
Lời giải:
Ta có:
\(a(4-b)(4-c)=a(16-4b-4c+bc)=a[16-4(4-a-\sqrt{abc})+bc]\)
\(=a(4a+4\sqrt{abc}+bc)=4a^2+4a\sqrt{abc}+abc\)
\(=(2a+\sqrt{abc})^2\)
\(\Rightarrow \sqrt{a(4-b)(4-c)}=2a+\sqrt{abc}\)
Hoàn toàn tương tự với các biểu thức còn lại, suy ra:
\(M=2a+\sqrt{abc}+2b+\sqrt{abc}+2c+\sqrt{abc}-\sqrt{abc}\)
\(=2(a+b+c+\sqrt{abc})=2.4=8\)
Cho a,b,c > 0 ; \(a+b+c+\sqrt{abc}=4\)
Tính : \(\sqrt{a\left(4-b\right)\left(4-c\right)}+\sqrt{b\left(4-a\right)\left(4-c\right)}+\sqrt{c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}\)
cho a , b , c > 0 thỏa mãn \(a+b+c+\sqrt{abc}=4\)
Tính giá trị : \(p=\sqrt{a\left(4-b\right)\left(4-c\right)+b\left(4-c\right)\left(4-a\right)-c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}\)
Bạn xem tại đây.
Câu hỏi của Hoa Hồng Nhung - Toán lớp 9 | Học trực tuyến
Cho a,b,c >0 và abc=1. Tìm min:
\(P=\dfrac{a^4+b^4}{\left(a^2+b^2\right)\left(a+b\right)}+\dfrac{b^4+c^4}{\left(b^2+c^2\right)\left(b+c\right)}+\dfrac{a^4+c^4}{\left(a^2+c^2\right)\left(a+c\right)}\)
Cho a,b,C>0 thỏa mãn an+bc+ca=1.Tìm GTNN M=\(\frac{a^8}{\left(a^4+b^4\right)\left(a^2+b^2\right)}+\frac{b^8}{\left(b^4+c^4\right)\left(b^2+c^2\right)}+\frac{c^8}{\left(c^4+a^4\right)\left(c^2+b^2\right)}\)
Cho ab+bc+ca=1. Tìm gia trị nhỏ nhất của:\(P=\frac{a^8}{\left(a^4+b^4\right)\left(a^2+b^2\right)}+\frac{b^8}{\left(b^4+c^4\right)\left(b^2+c^2\right)}+\frac{c^8}{\left(c^4+a^4\right)\left(c^2+a^2\right)}\)