Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Hoàng Việt
Xem chi tiết
minh anh nguyễn
Xem chi tiết
Akai Haruma
18 tháng 2 2017 lúc 22:30

Lời giải:

Ta có:

\((S): x^2+y^2+z^2-2x-2y-2z=0\)

\(\Leftrightarrow (x-1)^2+(y-1)^2+(z-1)^2=3\)

Do đó mặt cầu \((S)\) có tâm \(O=(1,1,1)\)\(R=\sqrt{3}\)

Khi đó, dễ dàng nhận thấy \(A\in (S)\)

Ta có \(S_{OAB}=\frac{OA.OB.\sin \angle AOB}{2}\leq \frac{OA.OB.1}{2}=\frac{3}{2}\)\(\sin AOB\leq 1\)

Dấu bằng xảy ra khi \(\angle AOB=90^0\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 1 2017 lúc 8:54

Đáp án là C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 7 2019 lúc 17:53

Đáp án là C

+) Ta có tam giác ABC là hình chiếu vuông góc của tam giác A'BC trên mặt phẳn (ABC)

+) Gọi φ  là góc giữa (A'BC) và  (ABC).

Ta có : 

lê thanh tùng
Xem chi tiết
Nguyễn Thiên Kim
20 tháng 7 2016 lúc 20:24

Trước tiên ta chứng minh bài toán phụ: công thức tính diện tích tam giác ABC có góc A nhọn \(S_{\Delta ABC}=\frac{1}{2}AB.AC.\sin A\)

Giải: Kẻ đường cao BH thì \(BH=AB.\sin A\)do đó \(S_{\Delta ABC}=\frac{1}{2}AC.BH=\frac{1}{2}AC.AB.\sin A\)

Ta quay trở lại việc giải bài toán trên. (hình bạn tự vẽ nhé!)

Ta có \(S_{DEF}=S_{ABC}-S_{AEF}-S_{BDF}-S_{CDE}\)suy ra \(\frac{S_{DEF}}{S_{ABC}}=1-\frac{S_{AEF}}{S_{ABC}}-\frac{S_{BDF}}{S_{ABC}}-\frac{S_{CDE}}{S_{ABC}}.\)

Áp dụng bài toán phụ ta có \(\frac{S_{AEF}}{S_{ABC}}=\frac{\frac{1}{2}AE.AF.\sin A}{\frac{1}{2}AB.AC.\sin A}=\frac{AE.AF}{AB.AC}=\frac{AF}{AC}.\frac{AE}{AB}\)

Trong các tam giác vuông ACF và ABE có: \(\cos A=\frac{AF}{AC}\)và \(\cos A=\frac{AE}{AB}\)

Do đó \(\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)tương tự \(\frac{S_{BDF}}{S_{ABC}}=\cos^2B\)và \(\frac{S_{CDE}}{S_{ABC}}=\cos^2C\)

Vậy \(\frac{S_{DEF}}{S_{ABC}}=\left(1-\cos^2A\right)-\cos^2B-\cos^2C=\sin^2A-\cos^2B-\cos^2C.\)

Hay \(S_{DEF}=\left(\sin^2A-\cos^2B-\cos^2C\right).S_{ABC}=\sin^2A-\cos^2B-\cos^2C\)(do \(S_{ABC}=1\)).

Tung Nguyễn
Xem chi tiết
Mai Thành Đạt
Xem chi tiết
Hoàng Lê Bảo Ngọc
11 tháng 7 2016 lúc 9:17

1) \(A=\frac{x^2+2x+9}{-2y-y^2+3}=\frac{\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\left(-y^2-2y+3\right)}{-y^2-2y+3}=\frac{\left(x+1\right)^2+2\left(y+1\right)^2}{-y^2-2y+3}+2\ge2\)Vậy Min A = 2 \(\Leftrightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases}}\)

wilbur
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 22:49

a) Theo định lý sin: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} \to b = \frac{{a.\sin B}}{{\sin A}}\) thay vào \(S = \frac{1}{2}ab.\sin C\) ta có:

\(S = \frac{1}{2}ab.\sin C = \frac{1}{2}a.\frac{{a.\sin B}}{{\sin A}}.sin C = \frac{{{a^2}\sin B\sin C}}{{2\sin A}}\) (đpcm)

b) Ta có: \(\hat A + \hat B + \hat C = {180^0} \Rightarrow \hat A = {180^0} - {75^0} - {45^0} = {60^0}\)

\(S = \frac{{{a^2}\sin B\sin C}}{{2\sin A}} = \frac{{{{12}^2}.\sin {{75}^0}.\sin {{45}^0}}}{{2.\sin {{60}^0}}} = \frac{{144.\frac{1}{2}.\left( {\cos {{30}^0} - \cos {{120}^0}} \right)}}{{2.\frac{{\sqrt 3 }}{2}\;}} = \frac{{72.(\frac{{\sqrt 3 }}{2}-\frac{{-1 }}{2}})}{{\sqrt 3 }} = 36+12\sqrt 3 \)