Cho hàm số y=(2m-4)x + m - 1
a)Tìm m để hàm số đồng biến
b)Tìm m biết đồ thị hàm số trên đi qua A(2;3)
c)Vẽ đồ thị hàm số khi m=3
Bài 3. Cho hàm số bậc nhất y = ax – 5 Tìm các giá trị của m để hàm số y = (2m – 4)x + 5
a) Đồng biến trên R. b. Nghịch biến trên R
a) Tìm hệ số góc a, biết đồ thị hàm số y = ax – 5 đi qua điểm A(3 ; 1)
b) Vẽ đồ thị hàm số vừa tìm được ở câu a.
Mn giúp mình với
Cho hàm số y=(-m-18)x+3m+1 (1)
a, Tìm m để hàm số đồng biến trên R.
b, Tìm m biết đồ thị hàm số ( 1 ) song song với đường thẳng y= -19x-5 .
c, Tìm m để đồ thị hàm số đi qua A(-1;2) .
a. Để hs (1) đồng biến trên R :
\(\Leftrightarrow-m-18>0\)
\(\Leftrightarrow-m>18\)
\(\Leftrightarrow m< -18\)
Vậy \(m< -18\) thì hs (1) đồng biến trên R
b. Do ĐTHS (1) // đ.t \(y=-19x-5\) nên :
\(\left\{{}\begin{matrix}-m-18=-19\\3m+1\ne-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m\ne-2\end{matrix}\right.\)
c. Vì ĐTHS (1) đi qua điểm \(A\left(-1;2\right)\) nên ta có : x = -1 và y = 2
Thay x = -1 và y = 2 vào (1) ta được :
\(2=\left(-m-18\right).\left(-1\right)+3m+1\)
\(\Leftrightarrow2=m+18+3m+1\)
\(\Leftrightarrow-17=4m\)
\(\Leftrightarrow m=\dfrac{-17}{4}\)
a. hàm số (1) đồng biến trên R khi -m-18 > 0 <=> m < -18 . Vậy m < -18 thì hàm số (1) đồng biến. b. đồ thị hàm số (1) song song với đường thẳng y= -19x-5 <=> -m-18=-19 và 3m+1 khác -5 <=> m= 1 và m khác 4/3 . Vậy m=1 và m khác 4/3 thì đồ thị hàm số ( 1 ) song song với đường thẳng y= -19x-5 . c. đồ thị hàm số y=(-m-18)x+3m+1 đi qua A(-1;2) => x=-1 ; y=2 => 2=(-m-18)*(-1)+3m+1 <=> 2= m+18+3m+1 <=> 4m=17 <=> m=17/4 . Vậy m=17/4 thì đồ thị hàm số y=(-m-18)x+3m+1 đi qua A(-1;2)
cho hàm số y=(2m-1)x2 (m:tham số)
a,Tìm m dể hàm số đạt GTNN bằng 0 khi x=0
b,Tìm m để hàm số đồng biến khi x<0 và nghịch biến khi x>0
c, Tìm m để đồ thị hàm số đi qua (1;2) và vẽ đồ thị hàm số với m vừa tìm được.
a) Để hàm số đạt giá trị nhỏ nhất bằng 0 khi x=0 thì 2m-1>0
\(\Leftrightarrow2m>1\)
hay \(m>\dfrac{1}{2}\)
b) Để hàm số đồng biến khi x<0 và nghịch biến khi x>0 thì 2m-1<0
\(\Leftrightarrow2m< 1\)
hay \(m< \dfrac{1}{2}\)
cho hàm số y = (2m+3) x-2 có đồ thị (d)
a) tìm m để đồng thị hàm số nghịch biến , nghịch biến
b) tìm m biết đồ thị hàm số trên song song với đường thẳng y = -5x+3
a, để hàm số nghịch biến thì \(2m+3< 0\Rightarrow m< -\dfrac{3}{2}\)
để hàm số đồng biến thì \(2m+3>0\Rightarrow m>-\dfrac{3}{2}\)
b, Để hàm số y = (2m+3)x-2 song song với đường thẳng y = -5x+3 thì
\(\left\{{}\begin{matrix}2m+3=-5\\-2\ne3\end{matrix}\right.\Rightarrow m=-4\)
Cho hàm số y=(-m-18)x+3m+1 (1)
a, Tìm m để hàm số đồng biến trên R.
b, Tìm m biết đồ thị hàm số ( 1 ) song song với đường thẳng y= -19x-5 .
c, Tìm m để đồ thị hàm số đi qua A(-1;2) .
a, -m-18>0 ⇔ m<-18
b, -m-18=-19 và 3m+1-5 ⇔ m=1
c, 2=(-m-18)(-1)+3m+1 ⇔ m=-17/4
Bài 9. Cho hàm số y = (2m- 3) x -1 (1). Tìm m để: a)Hàm số (1) là hàm số bậc nhất b)Hàm số (1) là hàm số bậc nhất đồng biến, nghịch biến c)Hàm số (1) đi qua điểm (-2; -3) d)Đồ thị của (1) là 1 đường thẳng // với đt y = (-m+ 2) x + 2m e)Đồ thị của (1) đồng quy với 2 đt y = 2x - 4 và y = x +1 f)Khoảng cách từ gốc tọa độ đến đường thẳng (1) bằng 1 5
a: Để hàm số là hàm số bậc nhất thì 2m-3<>0
hay m<>3/2
b: Để hàm số đồng biến thì 2m-3>0
hay m>3/2
Để hàm số nghịch biến thì 2m-3<0
hay m<3/2
Giải các phương trình sau
1) Cho hàm số y=ax+b. Tìm a,b biết răngf đồ thị hàm số đi qua hai điểm: A(-2;5); B(1;-4)
2) Cho hàm số y=(2m-1)x+m-2
a) Tìm điều kiện của m để hàm số nghichj biến
1: Vì (d) đi qua A(-2;5) và B(1;-4) nên ta có hệ phương trình:
-2a+b=5 và a+b=-4
=>a=-3; b=-1
2:
a: Để hàm số đồng biến thì 2m-1>0
=>m>1/2
Bài 4: Cho hàm số : y=mx + 1 (1), trong đó m là tham số
a) Tìm m để đồ thị hàm số (1) đi qua điểm A(1;4). Với giá trị m vừa tìm được, hàm số (1) đồng biến hay nghịch biến trên R
b) Tìm m để đồ thị hàm số (1) song song với đường thẳng (d) : y=m\(^2\)x + m + 1
a: Thay x=1 và y=4 vào (1), ta được:
\(m\cdot1+1=4\)
=>m+1=4
=>m=3
Thay m=3 vào y=mx+1, ta được:
\(y=3\cdot x+1=3x+1\)
Vì a=3>0
nên hàm số y=3x+1 đồng biến trên R
b: Để đồ thị hàm số (1) song song với (d) thì
\(\left\{{}\begin{matrix}m^2=m\\m+1\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\m\ne0\end{matrix}\right.\)
=>m-1=0
=>m=1
: Cho hàm số : y = ( m – 1).x + m (d)
a) Tìm m để hàm số đồng biến, nghịch biến ?
b) Tìm m để đồ thị hàm số đi qua điểm A( - 1 ; 1)
c) Tìm m để đồ thị hàm số song song với đường thẳng có phương trình : x – 2y = 1
d) Tìm m để đồ thị hàm số cắt trục hoành tại điểm A có hoành độ x = 2- căn 3 /2
Lời giải:
a. Để hàm đồng biến thì $m-1>0\Leftrightarrow m>1$
Để hàm nghịch biến thì $m-1<0\Leftrightarrow m< 1$
b. Để đths đi qua điểm $A(-1;1)$ thì:
$y_A=(m-1)x_A+m$
$\Leftrightarrow 1=(m-1)(-1)+m=1-m+m$
$\Leftrightarrow 1=1$ (luôn đúng)
Vậy đths luôn đi qua điểm A với mọi $m$
c.
$x-2y=1\Rightarrow y=\frac{1}{2}x-\frac{1}{2}$
Để đths đã cho song song với đths $y=\frac{1}{2}x-\frac{1}{2}$ thì:
\(\left\{\begin{matrix} m-1=\frac{1}{2}\\ m\neq \frac{-1}{2}\end{matrix}\right.\Leftrightarrow m=\frac{3}{2}\)
d,
ĐTHS cắt trục hoành tại điểm có hoành độ $\frac{2-\sqrt{3}}{2}$, tức là ĐTHS đi qua điểm $(\frac{2-\sqrt{3}}{2}; 0)$
$\Rightarrow 0=(m-1).\frac{2-\sqrt{3}}{2}+m$
$\Leftrightarrow m=\frac{2-\sqrt{3}}{4-\sqrt{3}}$