Câu 3: Cho 2 điểm A(−1;1), B(3;3).
a) Lập phương trình đường tròn (C) có tâm là A và bán kinh R=3.
b) Viết phương trình đường tròn có tâm nằm trên trục Oy và đi qua hai điểm A và B.
Câu 1 : (2 điểm) Cho biểu thức 2 2 1
a, Rút gọn biểu thức
b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối
giản.
Câu 2: (1 điểm)
Tìm tất cả các số tự nhiên có 3 chữ số abc sao cho 1 2 nabc và 2 ncba )2(
Câu 3: (2 điểm)
a. Tìm n để n2
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2
Câu 4: (2 điểm)
a. Cho a, b, n N*
b. Cho A =
Câu 5: (2 điểm)
Cho 10 số tự nhiên bất kỳ : a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số
các số liên tiếp nhau trong dãy trên chia hết cho 10.
Câu 6: (1 điểm)
Cho 2006 đường thẳng trong đó bất kì 2 đườngthẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng
qui. Tính số giao điểm của chúng.
Câu 1: cho sin a = -\(\dfrac{3}{5}\) và \(\pi\) < a< \(\dfrac{3\pi}{2}\) . Tính giá trị sin (a +\(\dfrac{\pi}{3}\))
Câu 2: Trong mặt phẳng Oxy, cho điểm I ( 1; -1) và đường thẳng d: x+y+2=0. Viết phương trình đường tròn tâm I cắt d tại hai điểm phân biệt A, B sao cho AB= 2
giúp mk vs nhé!
1.
\(cos\alpha=-\sqrt{1-sin^2\alpha}=-\dfrac{4}{5}\)
\(\Rightarrow sin\left(\alpha+\dfrac{\pi}{3}\right)=sin\alpha.cos\dfrac{\pi}{3}+cos\alpha.sin\dfrac{\pi}{3}\)
\(=-\dfrac{3}{5}.\dfrac{1}{2}-\dfrac{4}{5}.\dfrac{\sqrt{3}}{2}\)
\(=-\dfrac{15+8\sqrt{3}}{20}\)
2.
Gọi H là chân đường vuông góc từ I đến AB \(\Rightarrow AH=1\)
Ta có: \(IH=d\left(I;d\right)=\dfrac{ \left|1-1+2\right|}{\sqrt{2}}=\sqrt{2}\)
Khi đó: \(R=IA=\sqrt{IH^2+AH^2}=\sqrt{1+4}=\sqrt{5}\)
Phương trình đường tròn:
\(\left(x-1\right)^2+\left(y+1\right)^2=5\)
Làm lại đây nha, mình nhầm đoạn cuối một tí.
Đáp án:
AD+BC
=ED-EA+EC-EB
=(ED+EC)-(EA+EB) (1)
Mà E là trung điểm của AB=> EA+EB=0
(1)=2EF (F là trung điểm DC)
Câu 1: Cho 4 điểm không thuộc đường thẳng a. Kẻ các đoạn thẳng nối các điểm đã cho. Hỏi có nhiều nhất mấy đoạn thẳng cắt a?
Câu 2: Có hay không một đường thẳng không đi qua 1 điểm nào trong 5 điểm trên mặt phẳng( trong đó không có 3 điểm nào thẳng hàng) mà cắt đúng 5 đoạn thẳng? Vì sao?
Câu 3: Chứng minh rằng: BCNN( n; 37n+1)= 37n^2+ n với n thuộc N sao
Câu 4: Tìm các số nguyên n biết: 3n+17 chia hết cho 2n-3
Câu 5: Tìm các số nguyên a và b biết: 3.a.b=2.( a+b+11)
Các bạn cứ trả lời dần dần từng câu nhé!
câu 1: Cho trước 4 điểm A, B, C, D trong đó không có 3 điểm nào thẳng hàng. Tìm điểm O sao cho 3 điểm A, O, C thẳng hàng và 3 điểm B, O, D thẳng hàng.
câu 2 :Cho 2 tia AM, AN đối nhau. Lấy điểm B sao cho điểm N nằm giữa hai điểm A, B. Hỏi A có nằm giữa hai điểm M, N không?
giúp mk với mk còn 10 phút nữa thui
Câu 1: Tìm x:
a) xy+1=2x+3y
b) xy- 7y+ 5x=0 với y>3
Câu 2:Vẽ hình:
a) Có 4 đoạn thẳng và 6 điểm sao cho mỗi đoạn thẳng chứa 3 điểm
b) Có 6 đoạn thẳng và 7 điểm sao cho mỗi đoạn thẳng chứa 3 điểm
c) Có 10 đường thẳng và 5 điểm sao cho mỗi đoạn thẳng chứa 4 điểm
Câu 3: Cho đoạn thẳng AB có độ dài là a (cm). Điểm C nằm giữa A và B. Gọi M và N lần lượt là trung điểm của AC và BC. Chứng minh AB= 2.MN
Câu 1:(2 điểm):
a) Cho a,b,c là các số thực thỏa mãn a+b+c= 2018 và 1/a +1/b +1/c = 1/2018. Tính giá trị của biểu thức A=1/a^2017 + 1/b^2017 + 1/c^2017
b) Rút gọn biểu thức [ (căn(căn(5)+2)+căn(căn(5)-2))/căn(căn(5)+1) ] - căn(3-2.căn(2))
Câu 2:(1.5 điểm):
Giải phương trình (x^2)+(4x^2)/(x^2-4x+4) = 5
Câu 3:(1.5 điểm):
Tìm số tự nhiên y để (y^2+1)x^3 + (y^3-1)x chia hết cho 6, biết x thuộc N*
Câu 4:(2,5 điểm):
Cho ABC nhọn, ba đường cao AD, BF, CE cắt nhau tại H.
a) Giả sử HB = 6cm; HF = 3cm; CE = 11cm và CH>HE. Tính độ dài CH;EH.
b)Gọi I là giao điểm EF và AH. Cmr IH/AI=HD/AD
c) Gọi K là điểm nằm giữa C và D. Kẻ AS vuông góc HK tại S. Cm SK là phân giác của góc DSI
Câu 5:(1,5 điểm):
Cho tam giác ABC, I là điểm nằm trong tam giác. Các tia AI, BI, CI cắt các cạnh BC, AC, AB lần lượt tại các điểm D, E, F. Cmr AI/ID+BI/IE+CI/IF>=6
Câu 6:(1.5 điểm):
Cho x, y, z > 0. Cmr (x^2-z^2)/(y+z) + (z^2-y^2)/(x+y) + (y^2-x^2)/(x+z) >=0
CÁC AE GIÚP EM VỚI (ĐANG GẤP).
cho hình vẽ đi
không có hình vẽ
=> Ta không trả lời được
Bạn ko cần thiết làm bài hình đâu, bạn chỉ cần làm 1 trong 6 bài là đc !
38.
Gọi I là trung điểm AB và G là trọng tâm tam giác ABC
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\\\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\end{matrix}\right.\)
\(3\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\)
\(\Leftrightarrow3.\left|2\overrightarrow{MI}\right|=3\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)
\(\Leftrightarrow6\left|\overrightarrow{MI}\right|=2.\left|3\overrightarrow{MG}\right|\)
\(\Leftrightarrow6\left|\overrightarrow{MI}\right|=6\left|\overrightarrow{MG}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MI}\right|=\left|\overrightarrow{MG}\right|\)
\(\Leftrightarrow MI=MG\)
\(\Rightarrow\) Tập hợp M là đường trung trực của đoạn thẳng IG
Câu 1 : (2 điểm) Cho biểu thức
a, Rút gọn biểu thức
b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.
Câu 2: (1 điểm)
Tìm tất cả các số tự nhiên có 3 chữ số sao cho và
Câu 3: (2 điểm)
a. Tìm n để n2 + 2006 là một số chính phương
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.
Câu 4: (2 điểm)
a. Cho a, b, n Î N* Hãy so sánh và
b. Cho A = ; B = . So sánh A và B.
Câu 5: (2 điểm)
Cho 10 số tự nhiên bất kỳ : a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
Câu 6: (1 điểm)
Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.
Câu 6:
Số giao điểm là:
\(\dfrac{2006\cdot2005}{2}=2011015\left(điểm\right)\)
câu 1: Tính hợp lí
9^6*7 - 3^12*4
Câu 2:cho 4 điểm A , B , C , D trong đó ko có 3 điểm nào thẳng hàng
a) Hỏi vẽ đc bn đường thẳng qua các điểm đó ?
b) Viết tên các đường thẳng
Câu 1: \(9^6\cdot7-3^{12}\cdot4\)
\(=3^{2^6}\cdot7-3^{12}\cdot4\)
\(=3^{12}\cdot7-3^{12}\cdot4\)
\(=3^{12}\left(7-4\right)\)
\(=3^{12}\cdot3\)
\(=3^{13}\)
Câu 2:
a) Số đường thẳng đi qua 2 điểm là: \(3+2+1=6\left(đường\right)\)
b) Các đường thẳng đó là: \(AB;AC;AD;BC;BD;CD\)