Có bao nhiêu giá trị nguyên của tham số m để: \(\overset{max\left|x^3-3x+m\right|}{\left[0;2\right]}+\overset{min\left|x^3-3x+m\right|}{\left[0;2\right]}=3\)
Đề bài: Cho hàm số y = f(x) = \(\dfrac{2x+m}{x-1}\). Tính tổng các giá trị của tham số m để \(\overset{maxf\left(x\right)}{\left[2,3\right]}-\overset{minf\left(x\right)}{\left[2,3\right]}=2\)
Với \(m=-2\) ko thỏa mãn
Với \(m\ne-2\) hàm \(f\left(x\right)\) là bậc nhất trên bậc nhất nên luôn đơn điệu trên khoảng đã cho
\(\Rightarrow\) min max rơi vào 2 đầu mút
\(f\left(2\right)=m+4\) ; \(f\left(3\right)=\dfrac{m+6}{2}\)
\(\Rightarrow\left|m+4-\dfrac{m+6}{2}\right|=2\Leftrightarrow\)
\(\Leftrightarrow m+2=\pm4\Rightarrow\left[{}\begin{matrix}m=2\\m=-6\end{matrix}\right.\)
a) Có bao nhiêu giá trị nguyên của tham số m để hai phương trình sau có nghiệm chung:
\(\left(x-2\right)\left(x^2-7x+41\right)=0\left(1\right)\)
\(x^2-mx+m^2-5m+8=0\left(2\right)\)
Ta có: \(\left(x-2\right)\left(x^2-7x+41\right)=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Thay x=2 vào (2), ta được:
\(2^2-2m+m^2-5m+8=0\)
\(\Leftrightarrow m^2-7m+12=0\)
\(\Leftrightarrow\left(m-3\right)\left(m-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=3\\m=4\end{matrix}\right.\)
Vậy: Có 2 giá trị nguyên của m thỏa mãn hai phương trình có nghiệm chung
có tất cả bao nhiêu giá trị nguyên của tham số m để pt : \(x^2-4\left|x\right|-m=0\) có 4 nghiệm phân biệt
Đặt \(\left|x\right|=t\ge0\Rightarrow t^2-4t-m=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4+m>0\\t_1+t_2=4>0\\t_1t_2=-m>0\end{matrix}\right.\) \(\Leftrightarrow-4< m< 0\Rightarrow m=\left\{-3;-2;-1\right\}\)
Có bao nhiêu giá trị nguyên của tham số m nhỏ hơn 2021 để phương trình \(4x^2+\left(3-2m\right)x+1+2\sqrt{4x^3+x}=0\) có nghiệm
ĐKXĐ: \(x\ge0\)
- Với \(x=0\) không phải nghiệm
- Với \(x>0\) , chia 2 vế của pt cho \(x\) ta được:
\(\dfrac{4x^2+1}{x}+2\sqrt{\dfrac{4x^2+1}{x}}+3-2m=0\)
Đặt \(t=\sqrt{\dfrac{4x^2+1}{x}}\ge\sqrt{\dfrac{2\sqrt{4x^2}}{x}}=2\)
Pt trở thành: \(t^2+2t+3-2m=0\)
\(\Leftrightarrow t^2+2t+3=2m\) (1)
Pt đã cho có nghiệm khi và chỉ khi (1) có nghiệm \(t\ge2\)
Xét hàm \(f\left(t\right)=t^2+2t+3\) khi \(t\ge2\)
Do \(\left\{{}\begin{matrix}a=1>0\\-\dfrac{b}{2a}=-1< 2\end{matrix}\right.\) \(\Rightarrow f\left(t\right)\) đồng biến khi \(t\ge2\)
\(\Rightarrow f\left(t\right)\ge f\left(2\right)=11\)
\(\Rightarrow\) Pt có nghiệm khi \(2m\ge11\Rightarrow m\ge\dfrac{11}{2}\)
Cho hàm số \(y=\dfrac{x^3}{3}-\left(m-1\right)x^2+3\left(m-1\right)x+1\). Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng \(\left(1;+\infty\right)\)
\(y'=x^2-2\left(m-1\right)x+3\left(m-1\right)\)
Hàm đồng biến trên khoảng đã cho khi với mọi \(x>1\) ta luôn có:
\(g\left(x\right)=x^2-2\left(m-1\right)x+3\left(m-1\right)\ge0\)
\(\Rightarrow\min\limits_{x>1}g\left(x\right)\ge0\)
Do \(a=1>0;-\dfrac{b}{2a}=m-1\)
TH1: \(m-1\ge1\Rightarrow m\ge2\)
\(\Rightarrow g\left(x\right)_{min}=f\left(m-1\right)=\left(m-1\right)^2-2\left(m-1\right)^2+3\left(m-1\right)\ge0\)
\(\Rightarrow\left(m-1\right)\left(4-m\right)\ge0\Rightarrow1\le m\le4\Rightarrow2\le m\le4\)
TH2: \(m-1< 1\Rightarrow m< 2\Rightarrow g\left(x\right)_{min}=g\left(1\right)=m\ge0\)
Vậy \(0\le m\le4\)
Cho hàm số \(f\left(x\right)\) xác định trên \(R\), có đạo hàm \(f'\left(x\right)=\left(x^2-4\right)\left(x-5\right)\forall x\in R\) và \(f\left(1\right)=0\). Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(g\left(x\right)=\left|f\left(x^2+1\right)-m\right|\) có nhiều điểm cực trị nhất?
A.7 B. 8 C. 5 D. 6
\(h\left(x\right)=f\left(x^2+1\right)-m\Rightarrow h'\left(x\right)=2x.f'\left(x^2+1\right)\)
\(h'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\f'\left(x^2+1\right)=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^2+1=2\\x^2+1=5\end{matrix}\right.\) \(\Rightarrow x=\left\{-2;-1;0;1;2\right\}\)
Hàm có nhiều cực trị nhất khi \(h\left(x\right)=m\) có nhiều nghiệm nhất
\(f\left(x\right)=\int f\left(x\right)dx=\dfrac{1}{4}x^4-\dfrac{5}{3}x^3-2x^2+20x+C\)
\(f\left(1\right)=0\Rightarrow C=-\dfrac{199}{12}\Rightarrow f\left(x\right)=-\dfrac{1}{4}x^4-\dfrac{5}{3}x^3-2x^2+20x-\dfrac{199}{12}\)
\(x=\pm2\Rightarrow x^2+1=5\Rightarrow f\left(5\right)\approx-18,6\)
\(x=\pm1\Rightarrow x^2+1=2\Rightarrow f\left(2\right)\approx6,1\)
\(x=0\Rightarrow x^2+1=1\Rightarrow f\left(1\right)=0\)
Từ đó ta phác thảo BBT của \(f\left(x^2+1\right)\) có dạng:
Từ đó ta dễ dàng thấy được pt \(f\left(x^2+1\right)=m\) có nhiều nghiệm nhất khi \(0< m< 6,1\)
\(\Rightarrow\) Có 6 giá trị nguyên của m
Có bao nhiêu tham số nguyên m để phương trình: \(\left(\sqrt{x+2}-\sqrt{10-x}\right)\left(x^2-10x-11\right)\left(\sqrt{3x+3-m}\right)=0\)
có đúng 2 nghiệm phân biệt
Phương trình đã cho tương đương
\(\left\{{}\begin{matrix}x\in\left[2;10\right];x\ge\dfrac{m-3}{3}\\\left[{}\begin{matrix}x=4\\x=-1\\x=11\end{matrix}\right.\end{matrix}\right.\)
Để phương trình có 2 nghiệm phân biệt thì
\(\left[{}\begin{matrix}x=4\\x=-1\\x=10\end{matrix}\right.\) không thỏa mãn điều kiện x ≥ \(\dfrac{m-3}{3}\)
⇔ \(\left[{}\begin{matrix}4< \dfrac{m-3}{3}\\-1< \dfrac{m-3}{3}\\10< \dfrac{m-3}{3}\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}m>15\\m>0\\m>33\end{matrix}\right.\) . (1)
Dựa vào trục số, (1) ⇔ m > 0
Vậy điều kiện của m là m > 0
Sai thì thứ lỗi ạ !
a) Cho hàm số \(y=x^2+2x+3+\left|x-a+1\right|\) có bao nhiêu giá trị nguyên của tham số \(a\in\left[-10;10\right]\) sao cho giá trị nhỏ nhất của hàm số lớn hơn 2
b) Tìm tất cả các giá trị của tham số m để hệ bất pt \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\) có nghiệm
c) Gọi (x;y) là nghiệm của hệ bất pt \(\left\{{}\begin{matrix}x-2y-2\le0\\4x-3y+12\ge0\\x+3y+3\ge0\\2x+y-4\le0\end{matrix}\right.\). Tìm giá trị lớn nhất của biểu thức F=4x+5y-6
b, \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le3\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(f\left(x\right)=x^2-2mx+m^2-9\ge0\) có nghiệm \(x\in\left[-1;3\right]\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m^2+9=9>0,\forall m\\-1< m< 3\\f\left(-1\right)=m^2+2m-8\ge0\\f\left(3\right)=m^2-6m\ge0\end{matrix}\right.\)
\(\Leftrightarrow m\in[2;3)\cup(-1;0]\)
cho hàm số y = f(x) liên tục trên R sao cho \(\max\limits_{\left[-8;\dfrac{8}{3}\right]}=5\). xét hàm số \(g\left(x\right)=2f\left(\dfrac{1}{3}x^3-x^2-3x+1\right)+m\). tìm tất cả các giá trị thực của tham số m để \(\max\limits_{\left[-2;4\right]}g\left(x\right)=-20\)
Có bao nhiêu giá trị nguyên của tham số m \(\in\left(-20;20\right)\) để hàm số y = \(\dfrac{x-1}{x-m}\) nghịch biến trên khoảng \(\left(-\infty;2\right)\)
\(y'=\dfrac{x-m-x+1}{\left(x-m\right)^2}=\dfrac{1-m}{\left(x-m\right)^2}\)
Hàm số nghịch biến trên khoảng \(\left(-\infty;2\right)\Leftrightarrow y'< 0\forall x\in\left(-\infty;2\right)\Leftrightarrow\left\{{}\begin{matrix}1-m< 0\\x\ne m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\ge2\end{matrix}\right.\Rightarrow m\ge2\)
Có 19-2+1=18 giá trị nguyên của m thỏa mãn