cho AB là 1 đường kính của đường tròn (O;2). vẽ dây AC=2,4. tia BC cắt tiếp tuyến A của (O) tại M. độ dài AM=
Cho 2 đường tròn đồng tâm, tâm O bán kính R và tâm O bán kính R' (R>R'). Điểm M nằm ngoài 2 đường tròn. Vẽ MA là tiếp tuyến của đường tròn tâm O bán kính R. MB là tiếp tuyến của đường tròn tâm O bán kính R'. Chứng minh rằng đường trung trực của đoạn thẳng AB đi qua trung điểm của OM
cho đường tròn O đường kính AB. vẽ 2 tiếp tuyến Ax, By. trên Ax lấy D, By lấy E sao cho DE là tiếp tuyến của đường tròn. CM \(\frac{1}{2}\)> r/R > \(\frac{1}{3}\)( r là bán kính đường tròn nội tiếp tam giác ODE, R là bán kính đường tròn tâm O đường kính AB đã cho
: Cho đường tròn tâm (O) , đường kính AB. Trên đường tròn lấy 1 điểm C sao cho BC>AC.Tiếp tuyến tại A của (O) cắt BC tại D.Vẽ đường kính CE .Vẽ AM vuông góc với OD tại M .Gọi N là trung điểm của BC .Chứng minh :
1/Tứ giác ADON nội tiếp , xác định tâm
2/tứ gíac ACBE là hình chữ nhật
3/DM.DO=DC.DB
4/Gọi I là giao điễm cũa BM và NE .Chứng minh : I là trung điểm của BM
5/EN cắt (O) tại T .Chứng tỏ : DT là tiếp tuyến của (O)
6/ Qua C kẻ đường thẳng song song với OD cắt AB tại G và cắt ET tại K .Chứng minh : N là trung điểm của KT
Cho đoạn thẳng AB =4cm gọi Ô là trung điểm của AB vẽ đường tròn tâm Ô bán kính 1cm cắt OA tại M OB tại N
a) xác định trên đoạn thẳng AB một điểm là tâm của một đường tròn bán kính 2cm đi qua O sao cho điểm N nằm trong đường tròn đó còn điểm N nằm ngoài đường tròn đó
c) đường tròn ở phần b cắt đường tròn tâm O bán kính 1cm tại C và D hãy so sánh tổng BC+CO với BM
Cho nửa đường tròn(O), đường kính CD. Qua 1 điểm M trên nửa đường tròn đó vẽ tiếp tuyến xy với nửa đường tròn. Kẻ CB vuông góc với xy tại B, kẻ DA vuông góc với xy tại A. Chứng minh CD là tiếp tuyến của đường tròn đường kính AB
trên CD lấy điểm N, kẻ MN vuông góc với CD
=> 2 tam giac vuông MBC=MNC
=> 2tam giác MAD=MND
=> MB=MN=MA = R
vậy CD là tiếp tuyến đường tròn tâm M
Cho đường tròn (O) đường kính AB=2R. Trên tia đối của tia AB lấy điểm M sao cho AM=R. Kẻ đường thẳng D vuông góc với BM tại M. Gọi N là trung điểm của OA. Qua N vẽ dây cung CD của đường tròn (O) (CD không là đường kính). Tia BC cắt d tại E, tia BD cắt d tại F. Chứng minh A là trực tâm của tam giác BEF
Cho đường tròn tâm O đường kính AB và một điểm C trên đường tròn. Từ O kẻ một đường thẳng song song với dây AC , đường thẳng này ćt tiếp tuyến tại B của đường tròn tại điểm D.
a) Chứng minh OD là phân giác của góc BOC
b) Chứng minh CD là tiếp tuyến của đường tròn
Cho nửa đường tròn O , đường kính AB . C là điểm nằm trên nửa đường tròn . GỌi D là 1 điểm trên AB qua D kẻ đường vuông góc với AB qua D cắt BC tại F cắt Ac tại E. Tiếp tuyến của nửa đường tròn tại C cắt EF tại I.
a) Chứng minh : I là trung điểm của EF.
b) Chứng minh : OC là tiếp tuyến của đường tròn ngoại tiếp tam giác ECF
Cho đường tròn tâm O đường kính AB.M,N thuộc AB sao cho OM=ON.I là 1 điểm thuộc đường tròn.IM,IN cắt (O) tại D,E.IO cắt (O) tại Q.DE cắt AB tại K.chứng minh rằng KQ là tiếp tuyến của đường tròn
Cho đường tròn (O), dây cung BC (BC không là đường kính). Điểm A di động trên cung nhỏ
BC (A khác B và C; độ dài đoạn AB khác AC). Kẻ đường kính AA’ của đường tròn (O), D là chân đường vuông góc kẻ từ A đến BC. Hai điểm E, F lần lượt là chân đường vuông góc kẻ từ B, C đến AA’. Chứng minh rằng:
1)Bốn điểm A, B, D, E cùng nằm trên một đường tròn.
2)BD.AC = AD.A’C.
3)DE vuông góc với AC.
4)Tâm đường tròn ngoại tiếp tam giác DEF là một điểm cố định.
Cần mỗi câu 4 Gấp !!!!
4:
Gọi I là trung điểm của BC
K là giao của OI với DA'
M là giao của EI với CF
N đối xứng D qua I
ΔOBC cân tại O có OI là trung tuyến
nên OI vuông góc BC
=>OI//AD
=>OK//AD
ΔADA' có OA=OA' OK//AD
=>KD=KA'
ΔDNA' có ID=IN và KD=KA'
nên IK//NA'
=>NA' vuông góc BC
góc BEA'=góc BNA'=90 độ
=>BENA' nội tiếp
=>góc EA'B=góc ENB
góc EA'B=góc AA'B=góc ACB
=>góc ENB=góc ACB
=>NE//AC
=>DE vuông góc EN
Xét ΔIBE và ΔICM có
góc EIB=góc CIm
IB=IC
góc IBE=góc ICM
=>ΔIBE=ΔICM
=>IE=IM
ΔEFM vuông tại F
=>IE=IM=IF
DENM có IE=IM và ID=IN nên DENM là hình bình hành
=>DENM là hình chữ nhật(Vì DE vuông góc EN)
=>IE=ID=IN=IM
=>ID=IE=IF
=>I là tâm đường tròn ngoại tiếp ΔDEF
mà I cố định
nên tâm đường tròn ngoại tiếp ΔDEF là một điểm cố định