vẽ đồ thị của hai hs y=1/2x^2 và y=-1/2x^2 trên cùng một trục tọa độ. a) đg thẳng đi qua A(0;2) và // với ox cắt y=1/2x^2 tại B và B'. b) tìm trên đồ thị hs điểm D có cùng hoành độ với B và D' có cùng hoành độ với B'
Cho hàm số y=2x+2(d1), y=-1/2x - 2(d2)
a) vẽ đồ thị của các hàm số đã cho trên cùng một hệ trục tọa độ Oxy
b)Tìm tọa độ giao điểm A của (d1) và (d2)
c)Viết phương trình đg thẳng(d3), bt (d3) đi qua A và song song với đường thẳng y=2-5x
b: Phương trình hoành độ giao điểm là:
\(2x+2=\dfrac{-1}{2}x-2\)
\(\Leftrightarrow x\cdot\dfrac{5}{2}=-4\)
hay x=-10
Thay x=-10 vào (d1), ta được:
\(y=-20+2=-18\)
\(c,\left(d_3\right)\) đi qua \(A\left(-10;-18\right)\) nên \(x=-10;y=-18\)
\(\left(d_3\right)\) có dạng \(y=ax+b\Leftrightarrow-18=-10a+b\left(1\right)\)
\(\left(d_3\right)//y=-5x+2\Leftrightarrow\left\{{}\begin{matrix}a=-5\\b\ne2\end{matrix}\right.\)
Thay vào \(\left(1\right)\Leftrightarrow-18=-10\left(-5\right)+b\Leftrightarrow b=32\left(tm\right)\)
Vậy \(\left(d_3\right):y=-5x+32\)
Cho hai hàm số y = x + 2 và y = -2x + 1.
a) Vẽ đồ thị hai hàm số trên trên cùng một mặt phẳng tọa độ.
b) Gọi A là giao điểm của hai đồ thị. Tìm tọa độ điểm A.
c) Viết phương trình đường thẳng đi qua điểm A và song song với đường thẳng y = 2x + 1.
b. PTHĐGĐ của hai hàm số:
\(x+2=-2x+1\)
\(\Rightarrow x=-\dfrac{1}{3}\)
Thay x vào hs đầu tiên: \(y=-\dfrac{1}{3}+2=\dfrac{5}{3}\)
Tọa độ điểm \(A\left(-\dfrac{1}{3};\dfrac{5}{3}\right)\)
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}x+2=-2x+1\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=\dfrac{5}{3}\end{matrix}\right.\)
1/ Vẽ (D) và (P) trên cùng một hệ trục tọa độ a) (D) : y= -2x + 3 b) (P) : y = x² c) Tìm tọa độ giao điểm của hai đồ thị 2/ Vẽ (D) và (P) trên cùng một hệ trục tọa độ a) (D) : y= -x + 3 b) (P) : y = 2x² c) Tìm tọa độ giao điểm của hai đồ thị 3/ Vẽ (D) và (P) trên cùng một hệ trục tọa độ a) (D) : y= x - 3 b) (P) : y = -3x² c) Tìm tọa độ giao điểm của hai đồ thị
1:
a:
b: PTHĐGĐ là:
x^2+2x-3=0
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
=>y=9 hoặc y=1
a) Vẽ đồ thị của các hàm số y = x và y = 2x + 2 trên cùng một mặt phẳng tọa độ.
b) Gọi A là giao điểm của hai đồ thị nói trên, tìm tọa độ điểm A.
c) Vẽ qua điểm B(0; 2) một đường thẳng song song với trục Ox, cắt đường thẳng y = x tại điểm C. Tìm tọa độ điểm C rồi tính diện tích tam giác ABC (đơn vị đo trên các trục tọa độ là xentimet)
a) Vẽ đường thẳng qua O(0; 0) và điểm M(1; 1) được đồ thị hàm số y = x.
Vẽ đường thẳng qua B(0; 2) và A(-2; -2) được đồ thị hàm số y = 2x + 2.
b) Hoành độ giao điểm của 2 đồ thị hàm số là nghiệm của phương trình:
2x + 2 = x
=> x = -2 => y = -2
Suy ra tọa độ giao điểm là A(-2; -2).
c) Qua B(0; 2) vẽ đường thẳng song song với Ox, đường thẳng này có phương trình y = 2 và cắt đường thẳng y = x tại C.
- Tọa độ điểm C:
Hoành độ giao điểm của 2 đồ thị hàm số là nghiệm của phương trình:
x = 2 => y = 2 => tọa độ C(2; 2)
- Tính diện tích tam giác ABC: (với BC là đáy, AE là chiều cao tương ứng với đáy BC)
a)
+) y = 2x + 2
Cho x = 0 => y = 2
=> ( 0 ; 2 )
y = 0 => x = -1
=> ( -1 ; 0 )
- Đồ thị hàm số y = x đi qua 2 điểm có tọa độ ( 0 ; 0 )
- Đồ thị hàm số y = 2x + 2 đi qua 2 điểm có tọa độ ( 0 ; 2 ) và ( -1 ; 0 )
b) Hoành độ điểm A là nghiệm của PT sau :
x = 2x + 2
<=> 2x - x = -2
<=> x = -2
=> y = -2
Vậy A ( -2 ; -2 )
c) Tung độ điểm C = 2 => hoành độ điểm C là x = 2
=> C ( 2 ; 2 )
Từ A hạ \(AH\perp BC\), ta có : AH = 4cm
BC = 2cm
Vậy : ..............
\(\Rightarrow S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.4.2=4\left(cm^2\right)\)
Cho hai hàm số y = x + 2 và y = -2x + 1.
a) Vẽ đồ thị hai hàm số trên trên cùng một mặt phẳng tọa độ.
b) Gọi A là giao điểm của hai đồ thị. Tìm tọa độ điểm A.
c) Viết phương trình đường thẳng đi qua điểm A và song song với đường thẳng y = 2x + 1.
Mng chỉ lm câu c) và vẽ đồ thị hàm số giúp mìk vs ạ !
\(b,\text{PT hoành độ giao điểm: }x+2=-2x+1\Leftrightarrow3x=-1\\ \Leftrightarrow x=-\dfrac{1}{3}\Leftrightarrow y=\dfrac{5}{3}\Leftrightarrow A\left(-\dfrac{1}{3};\dfrac{5}{3}\right)\\ c,\text{Gọi }y=ax+b\left(a\ne0\right)\text{ là đt cần tìm}\\ \Leftrightarrow\left\{{}\begin{matrix}a=2;b\ne1\\-\dfrac{1}{3}a+b=\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=\dfrac{7}{3}\end{matrix}\right.\\ \Leftrightarrow y=2x+\dfrac{7}{3}\)
Cho (d1):y= -2x + 3 và (d2):y= \(\dfrac{1}{2}x\)
a) Vẽ 2 đồ thị hàm số trên cùng một hệ trục tọa độ.
b) Tìm tọa độ giao điểm của hai đồ thị bằng phép toán.
c) Viết ptdt (D) đi qua 2 điểm A(4;3) và B(-1;2).\
Lời giải:
a.
Đồ thị xanh lá là $y=-2x+3$, xanh nước biển là $y=\frac{1}{2}x$
b. PT hoành độ giao điểm:
$y=-2x+3=\frac{1}{2}x$
$\Leftrightarrow x=\frac{6}{5}$
$y=\frac{1}{2}.\frac{6}{5}=\frac{3}{5}$
Vậy tọa độ giao điểm là $(\frac{6}{5}, \frac{3}{5})$
c.
$Gọi ptđt có dạng $y=ax+b$
Vì $A,B\in (d)$ nên:
\(\left\{\begin{matrix} y_A=ax_A+b\\ y_B=ax_B+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3=4a+b\\ 2=-a+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{1}{5}\\ b=\frac{11}{5}\end{matrix}\right.\)
Vậy ptđt là $y=\frac{1}{5}x+\frac{11}{5}$
Cho 2 hàm số y= 2x + 6 (d)
y= -x+3 (d')
a, Vẽ đồ thị 2 hs trên cùng hệ trục tọa độ
b, Tìm tọa độ giao điểm A của 2 đg thẳng
c, Gọi B và C lần lượt là điểm của d va d' với trục Ox tính S tam giác ABC, C tam giác ABC
b) Phương trình hoành độ giao điểm là:
\(2x+6=-x+3\)
\(\Leftrightarrow2x+x=3-6\)
\(\Leftrightarrow3x=-3\)
hay x=-1
Thay x=-1 vào (d), ta được:
\(y=2\cdot\left(-1\right)+6=-2+6=4\)
Vậy: A(-1;4)
Bài 9 Vẽ đồ thị các hàm số sau trên cùng một hệ trục tọa độ và tìm tọa độ giao điểm của 2 đường thẳng đó
a/ y= 3x-2 và y= x-3
c/ y = 2x + 1 và y= -2x
d/ y= và y = x – 1
a: Phương trình hoành độ giao điểm là:
3x-2=x-3
\(\Leftrightarrow2x=-1\)
hay \(x=-\dfrac{1}{2}\)
Thay \(x=-\dfrac{1}{2}\) vào y=x-3, ta được:
\(y=-\dfrac{1}{2}-3=\dfrac{-7}{2}\)
1. Trên hệ trục tọa độ Oxy, vẽ đồ thị hàm số y=2x+2 và y=2x
2. Gọi A là giao điểm của hai đồ thị đó. Tìm tọa độ của A.
3. Qua điểm (0,2) vẽ đường thẳng song song với trục hoành, cắt hai đường thẳng tại hai điểm B,C. Tính diện tích tam giác ABC
2: Vì y=2x+2//y=2x nên y=2x+2 và y=2x không có điểm chung
hay A không có tọa độ