Cho ba số tự nhiên a.b.c thỏa mãn:
\(a< b\le c;23< a< 30;10< c< 26\)
Khi đó b=........
Các số tự nhiên a,b,c thỏa mãn a^2+b^2=c^2. CMR
a} a.b.c chia hết cho 3
b} a.b.c chia hết cho 5
a) - Nếu a hoặc b chia hết cho 3 => abc chia hết cho 3.
- Nếu a không chia hết cho 3 và b không chia hết cho 3 => a² chia 3 dư 1, b² chia 3 dư 1 => c² chia 3 dư 2 (vô lí)
Vậy trường hợp a không chia hết cho 3 và b không chia hết cho 3 không xảy ra => abc chia hết cho 3
b) - Nếu a hoặc b chia hết cho 5 => abc chia hết cho 5.
- Nếu a không chia hết cho 5 và b không chia hết cho 5 => a² chia 5 dư 1 hoặc 4; b² chia 5 dư 1 hoặc 4.
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 1 => c² chia 5 dư 2 (vô lí)
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 4=> c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 1 => c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 4 => c² chia 5 dư 3 (vô lí).
Vậy ta luôn tìm được một giá trị của a, b, c thỏa mãn abc chia hết cho 5
Co bao nhiêu số tự nhiên có 5 chữ số dạng \(\overline{abcde}\) và thỏa mãn \(a\le b< c\le d\le e\)
Số lượng số cần tìm sẽ là A59=15120(sô)
CHúng ta chỉ cần lựa ra 5 số từ 9 số {1;2;...;9} rồi sắp xếp lại là đc
cho ba số thực dương a.b.c thỏa mãn a+b+c=5. GTNN của biểu thức P= \(4a+4b+\dfrac{c^3}{ab+b}\)
Các số tự nhiên a,b,c thoả mãn a^2 + b^2 = c^2
Cm :
a) a.b.c chia hết cho 3
b) a.b.c chia hết cho 5
Các số tự nhiên a,b,c thoả mãn a^2 + b^2 = c^2
Cm :
a) a.b.c chia hết cho 3
b) a.b.c chia hết cho 5
Các số tự nhiên a,b,c thoả mãn a^2 + b^2 = c^2
Cm :
a) a.b.c chia hết cho 3
b) a.b.c chia hết cho 5
cho ba số tự nhiên a b c thỏa mãn x =1/5 a c=1/18 a số tư nhiên a là;
Cho ba số tự nhiên a,b,c thõa mãn :
\(0\le a\le b+1\le c+2\) và a + b + c = 1
Tìm giá trị nhỏ nhất của c