Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng ( -10; 10) sao cho đồ thị hám số y = \(^{x^3-2mx^2+\left(2m+6\right)x}\) có 2 điểm cực trị nằm về 2 phía khác nhau của trục hoành
Cho hàm số y = m . sin x + 1 cos x + 2 . Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng - 10 ; 10 để giá trị nhỏ nhất của y nhỏ hơn -1.
A. 14
B. 13
C. 12
D. 15
Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x + 2 x + m đồng biến trên khoảng - ∞ ; - 10 ?
A. 7.
B. Vô số.
C. 9.
D. 8.
Vậy có 8 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Đáp án D
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2017;2018] để hàm số y = 1 3 x 3 - m x 2 + ( m + 2 ) x có hai điểm cực trị nằm trong khoảng 0 ; + ∞ .
A. 2015
B. 2016
C. 2018
D. 4035
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2017;2018] để hàm số y = 1 3 x 3 - m x 2 + ( m + 2 ) x có hai điểm cực trị nằm trong khoảng 0 ; + ∞ .
A. 2015
B. 2016
C. 2018
D. 4035
Chọn B
Phương pháp:
Từ ycbt suy ra ta phải tìm m để hàm số có hai điểm cực trị dương hay phương trình y' = 0 có hai nghiệm dương phân biệt.
Ta sử dụng phương trình có hai nghiệm dương phân biệt
Cách giải:
Ta có
Từ ycbt suy ra ta phải tìm m để hàm số có hai điểm cực trị dương hay phương trình y' = 0 có hai nghiệm dương phân biệt.
Khi đó
Mà nên có 2018 – 3 + 1 = 2016 giá trị m thỏa mãn.
Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (-6;5) sao cho hàm số f x = - sin 2 x + 4 cos x + m x 2 không có cực trị trên đoạn - π 2 ; π 2 ?
A. 5
B. 4
C. 3
D. 2
Có bao nhiêu giá trị nguyên của tham số thực m thuộc khoảng - 1000 ; 1000 để hàm số y = 2 x 3 - 3 2 m + 1 x 2 + 6 m m + 1 x + 1 đồng biến trên khoảng 2 ; + ∞ ?
A. 999
B. 1001
C. 1998
D. 998
Ta có:
⇒ * luôn có hai nghiệm phân biệt x 1 ; x 2 x 1 < x 2 với mọi m.
Áp dụng hệ thức Vi-ét ta có:
Vậy có tất cả 1001 giá trị m thỏa mãn bài toán.
Chọn B.
Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng - 2019 ; 2019 để hàm số y = sin 3 x - 3 cos 2 x + m sin x - 1 đồng biến trên đoạn .
A. 2020.
B. 2019.
C. 2028.
D. 2018.
Bài toán trở thành tìm m để hàm số y = t 3 + 3 t 2 - m t - 4 đồng biến trên 0 ; 1 .
TXĐ: D = R .
Ta có y ' = 3 t 2 + 6 t - m
Để hàm số đồng biến trên 0 ; 1
ta có TXĐ:
Có 2019 giá trị của m thỏa mãn.
Chọn B.
Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (-6;5) sao cho hàm số f ( x ) = - sin 2 x + 4 cos x + m x 2 không có cực trị trên đoạn - π 2 ; π 2 ?
A. 5
B. 4
C. 3
D. 2
Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (-1;7) để phương trình ( m - 1 ) x + ( m + 2 ) x ( x 2 + 1 ) = x 2 + 1 có nghiệm?
A. 6
B. 7
C. 1
D. 5
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-3; 3] để hàm số y = 3 - x - 3 3 - x - m nghịch biến trên khoảng (-1;1).
A. 4
B. 3
C. 2
D. 0
Chọn B
Phương pháp: Sử dụng đạo hàm của hàm hợp để tính đạo hàm.