Chọn B
Phương pháp: Sử dụng đạo hàm của hàm hợp để tính đạo hàm.
Chọn B
Phương pháp: Sử dụng đạo hàm của hàm hợp để tính đạo hàm.
Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x + 1 x + 3 m nghịch biến trên khoảng 3 ; + ∞
A. 3
B. 2
C. 0
D. 4
Cho hàm số f(x) có đạo hàm trên R là f ' x = x − 1 x + 3 . Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-10;20] để hàm số y = f x 2 + 3 x − m đồng biến trên khoảng (0;2)?
A. 18
B. 17
C. 16
D. 20
Cho hàm số f(x)=3 sinx+2. Gọi S là tập hợp các giá trị nguyên của tham số m để hàm số y = f 3 ( x ) - 3 mf 2 ( x ) + 3 ( m 2 - 4 ) f ( x ) - m nghịch biến trên khoảng (0;π/2). Số tập con của S bằng
A. 1
B. 2.
C. 4.
D. 16.
Có bao nhiêu giá trị nguyên của tham số thực m thuộc khoảng (-1000;1000) để hàm số y = 2 x 3 - 3 ( 2 m + 1 ) x 2 + 6 m ( m + 1 ) x + 1 đồng biến trên khoảng ( 2 ; + ∞ ) ?
A. 999.
B. 1001.
C. 1998
D. 1000.
Có bao nhiêu giá trị nguyên của tham số m để hàm số y = ( m 2 - 9 ) x 3 + ( m - 3 ) x 2 - x + 1 nghịch biến trên R
A. 6
B. 4
C. 3
D. 5
Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số y = 1 3 ( m 2 - 1 ) x 3 + ( m - 1 ) x 2 - 2 x + 3 nghịch biến trên khoảng ( - ∞ ; + ∞ ) ?
A. 2.
B. 3.
C. 4.
D. 1.
Tìm tập hợp S tất cả các giá trị của tham số thực m để hàm số y = 1 3 x 3 − m + 1 x 2 + m 2 + 2 m x − 3 nghịch biến trên khoảng (-1;1).
A. S = − 1 ; 0
B. S = ∅
C. S = − 1
D. S = 0 ; 1
Tập hợp S tất cả các giá trị của tham số thực m để hàm số sau nghịch biến trên khoảng (-1;1): y = 1 3 x 3 - m + 1 x 2 + m 2 + 2 m x - 3
A. S = ∅
B. S = 0 ; 1
C. S = - 1 ; 0
D. S = - 1
Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số y = m x 4 - m - 5 x 2 - 3 đồng biến trên khoảng (0;+¥).
A. 6
B. 4
C. 3
D. 5