Cho hàm số y=2mx + m + 2 (1)
a) Tìm giá trị của m để đồ thị hs (1) đi qua điểm A(-1;1) . Vẽ đồ thị hs trên và giá trị m tìm đc.
b) Tìm các giá trị của m để đồ thị hs (1) // với y=(m2 -3)x+2m-1
cho hàm số y=2mx+m+2 (1) (m là tham số).Tìm tất cả các giá trị của m để đồ thị hàm số (1) đi qua điểm A (-1;1).Với giá trị của m vừa tìm được thì hàm số (1) đồng biến hay nghịch biến trên R
Bài 1: Cho hàm số bậc nhất y=(m-1)x+m+3.(d)
a)Tìm giá trị của m để đồ thị của hàm số song song với đồ thị hàm số y = - 2x + 1 .
b) Tìm giá trị của m để đồ thị của hàm số đi qua điểm (1;-4) .
c) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m
d) Tìm giá trị của m để đổ thị của hàm số tạo với trục tung và trục hoành một tamgiác có diện tích bằng 1(đvdt ).
2.Cho hàm số y = (m -1)x + m +3(1) a)Tìm giá trị của m để đồ thị hàm số đi qua điểm A(2;4)b) Tìm điểm cố định mà đồ thị hàm số (1) luôn đi qua.
\(a,\Leftrightarrow2m-2+m+3=4\Leftrightarrow m=1\\ b,\text{Gọi điểm cố định mà (1) luôn đi qua là }A\left(x_0;y_0\right)\\ \Leftrightarrow y_0=\left(m-1\right)x_0+m+3\\ \Leftrightarrow mx_0-x_0+m+3-y_0=0\\ \Leftrightarrow m\left(x_0+1\right)+\left(3-x_0-y_0\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\3-x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=4\end{matrix}\right.\Leftrightarrow A\left(-1;4\right)\)
Vậy (1) luôn đi qua A(-1;4)
cho hs y=(m-2)x+2m+1(*)(m là tham số)
a. vs giá trị nào của m thì hàm số đồng biêns
b. tìm m để đồ thị hs (*) song song vs đường thẳng y=2x-1
c. tìm điểm cố định mà đồ thị hs (*) luôn luôn đi qua vs mọi giá trị của m
a, Hàm số ĐB\(\Leftrightarrow\) a \(>\)0
\(\Leftrightarrow\) m-2 \(>\)0 \(\Leftrightarrow\) m \(>\)2
Vậy m\(>\)2 thì hàm số ĐB.
b,ĐTHS (*) // vs đt y=2x-1 \(\Leftrightarrow\)\(\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}m-2=2\\2m+1\ne-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=4\left(tm\right)\\m\ne-1\end{cases}}\)
Vậy m=4;m\(\neq\)-1 thì ĐTHS (*) // vs đt y=2x-1
c,Gọi A(\(x_0;y_0\)) là điểm cố định mà ĐTHS (*) luôn đi qua vs mọi m
Thay x=\(x_0\) ,y=\(y_0\) vào pt đt (*) ta đc̣:
\(y_0=\left(m-2\right)x_02m+1\)\(\Leftrightarrow\)\(mx_0-2x_0+2m+1-y_0=0\)
\(\Leftrightarrow m\left(x_0+2\right)-2x_0+1-y_0=0\left(1\right)\)
Để đt (*) luôn đi qua A vs mọi m thì pt (1) luôn đúng vs mọi m ( pt (1) có vô số nghiệm m)
Điều này xảy ra \(\Leftrightarrow\hept{\begin{cases}x_0+2=0\\-2x_0+1-y_0=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_0=-2\\y_0=5\end{cases}}\)
\(\Rightarrow A\left(-2;5\right)\)
Vậy A(-2;5) là điểm cố định mà ĐTHS (*) luôn luôn đi qua vs mọi m
Cho hàm số y= (m-1)x + m +3
1) Tìm giá trị của m để đồ thị của hàm số song song với đồ thị hàm số y= -2x + 1.
2) Tim giá trị của m để đồ thị của hàm số đi qua điểm (1; -4).
3) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m.
4) Tim giá trị của m để đồ thị của hàm số tạo với trục tung và trục hoành một tam giác có diện tích bằng 1 (đvdt).
Vì hs y = (m-1)x +m +3 đi qua điểm (1; -4) nên ta đc :
-4 = (m-1) + m+3
<=> -4 = 2m + 2
<=> m =-3
1) Đặt tên cho dễ giải nè:
(d1) : y= (m-1) x + m+ 3
(d2) : y = -2x + 1
(d1) // (d2) <=> m - 1 = -2 và m+ 3 \(\ne\)1
<=> m = -1 và m \(\ne\)-2
1. để đồ thị của hàm số \(y=\left(m-1\right)x+m+3\) // với \(y=-2x+1\),
\(\left\{{}\begin{matrix}m-1=-2\\m+3\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-2\end{matrix}\right.\)
2. để đi qua điểm (1;-4),
\(-4=m-1+m+3\\ \Leftrightarrow-4=2m+2\Leftrightarrow m=-3\)
3. \(y=\left(m-1\right)x+m+3\\ \Leftrightarrow x+y=mx+m+3\\ \Leftrightarrow x+y-3=m\left(x+1\right)\)
tọa độ điểm cố định là nghiệm của hpt
\(\left\{{}\begin{matrix}x+y-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)
đ cđịnh M(-1;4)
4. \(y=\left(m-1\right)x+m+3\)
+ Khi x=0, y=m+3
+ khi y=0, \(x=\dfrac{-m-3}{m-1}\)
Để \(S=1\Rightarrow\dfrac{-m-3}{m-1}.\left(m+3\right)=2\\ \Leftrightarrow\left(m+3\right)^2=2\left(1-m\right)\\ \Leftrightarrow m^2+8m+7=0\Leftrightarrow\left(m+1\right)\left(m+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-7\end{matrix}\right.\)
Cho hàm số y=(2m-3)x-1. a) tìm giá trị của m để đồ thị hàm số song song với đường hẳng y=-5x+3. Vẽ đồ thị. b) Tìm giá trị của m để đồ thị hàm số đi qua điểm A(-1;0). c) Tìm giá trị của m để đồ thị của hàm số đã cho và các bạn các đường thẳng y=1 và y=2x-5 đồng qui tại một điểm. Giúp mình giải bài này với.
Bài 1: Cho hàm số bậc nhất y=(m-1)x+m+3.(d)
a) Vẽ đồ thị hàm số (d) khi m = - 1
b)Tìm giá trị của m để đồ thị của hàm số song song với đồ thị hàm số y = - 2x + 1 .
c) Tìm giá trị của m để đồ thị của hàm số đi qua điểm (1;-4) .
d) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m
e) Tìm giá trị của m để đổ thị của hàm số tạo với trục tung và trục hoành một tamgiác có diện tích bằng 1(đvdt ).
c: Thay x=1 và y=-4 vào (d), ta được:
\(m-1+m+3=-4\)
\(\Leftrightarrow2m=-6\)
hay m=-3
Bài 1 :Cho hàm số y=(m-1)x+m+3
1, Tìm giá trị của m để đồ thị hàm số song song với đồ thị hàm số y=-2x+1
2, Tìm giá trị của m để đồ thị hàm số đi qua điểm (1;-4)
3, Tìm điểm cố định mà đồ thị của hàm số luôn đi qua\
Bài 2 : Cho hàm số y=(2m-1)x+m-3
1, Tìm m để đồ thị hàm số đi qua điểm (2;5)
2, Cmr đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m. Tìm điểm cố định ấy
3, Tìm m để đồ thị hàm số cắt trục hoành tai điểm có hoành độ \(x=\sqrt{2}-1\)
cho hàm số: y = (m-2)x + m+1 (1)
a) với giá trị nào của m thì hs (1) là hàm số bậc nhất
b) với giá trị nào của m thì hs (1) đồng biến
c) vẽ đồ thị hàm số m =1
d) với giá trị nào của m thì đồ thị hàm số (1) đi qua A(2;1)
e) với giá trị nào của m thì đồ thị hàm số (1) song song với y = 3x+2
f) với giá trị nào của m thì đồ thị hàm số (1) tạo với trục Ox một góc tù?
g) với giá trị nào của m thì đồ thị hàm số (1) cắt đường thẳng y = 5x+6 tại trục tung
h) với m =3 tính góc tạo thành bởi đồ thị hàm số với trục hoành và tính khoảng cách từ gốc tọa độ đến đường thẳng
h: Khi m=3 thì \(y=\left(3-2\right)x+3+1=x+4\)
Gọi \(\alpha\) là góc tạo bởi đồ thị hàm số y=x+4 với trục Ox
\(tan\alpha=a=1\)
=>\(\alpha=45^0\)
y=x+4
=>x-y+4=0
Khoảng cách từ O(0;0) đến đường thẳng x-y+4=0 là:
\(\dfrac{\left|0\cdot1+0\cdot\left(-1\right)+4\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)
cho hàm số: y = (m-2)x + m+1 (1)
a) với giá trị nào của m thì hs (1) là hàm số bậc nhất
b) với giá trị nào của m thì hs (1) đồng biến
c) vẽ đồ thị hàm số m =1
d) với giá trị nào của m thì đồ thị hàm số (1) đi qua A(2;1)
e) với giá trị nào của m thì đồ thị hàm số (1) song song với y = 3x+2
f) với giá trị nào của m thì đồ thị hàm số (1) tạo với trục Ox một góc tù?
g) với giá trị nào của m thì đồ thị hàm số (1) cắt đường thẳng y = 5x+6 tại trục tung
h) với m =3 tính góc tạo thành bởi đồ thị hàm số với trục hoành và tính khoảng cách từ gốc tọa độ đến đường thẳng
a: Để (1) là hàm số bậc nhất thì \(m-2\ne0\)
=>\(m\ne2\)
b: Để (1) đồng biến thì m-2>0
=>m>2
c: Khi m=1 thì \(y=\left(1-2\right)x+1+1=-x+2\)
d: Thay x=2 và y=1 vào (1), ta được:
\(2\left(m-2\right)+m+1=1\)
=>2m-4+m=0
=>3m-4=0
=>3m=4
=>\(m=\dfrac{4}{3}\)
e: Để (1)//y=3x+2 thì \(\left\{{}\begin{matrix}m-2=3\\m+1< >2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=3\\m< >1\end{matrix}\right.\)
=>m=3
f: Để (1) tạo với trục Ox một góc tù thì m-2<0
=>m<2
g: Thay x=0 vào y=5x+6, ta được:
\(y=5\cdot0+6=6\)
Thay x=0 và y=6 vào (1), ta được:
\(0\left(m-2\right)+m+1=6\)
=>m+1=6
=>m=5