Tam giác ABC nội tiếp đường tròn (C): x2 + y2 = 25. K (2 ; 1) ∈ AC. M ,N lần lượt là chân đưởng cao kẻ từ B và C của tam giác ABC. Tìm A , B , C biết (MN) : 4x -3y + 10 = 0, xA < 0
Trong mặt phẳng tọa độ Oxy cho tam giác ABC có trực tâm H, trọng tâm G(-1;3). Gọi K, M, N lần lượt là trung điểm của AH, AB, AC. Tìm phương trình đường tròn ngoại tiếp tam giác ABC biết rằng đường tròn ngoại tiếp tam giác KMN là (C): x2+y2+4x-4y-17=0.
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC nội tiếp đường tròn có phương trình x 2 + y 2 – 4 x - 2 y – 8 = 0 . Đỉnh A thuộc tia Oy, đường cao kẻ từ đỉnh C thuộc đường thẳng x + 5y = 0. Tìm tọa độ đỉnh B của tam giác ABC.
A. B (-1;-1)
B. B (0;4)
C. B (5;-1)
D. B (1;9)
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC nội tiếp đường tròn có phương trình x 2 + y 2 – 4 x - 2 y – 8 = 0 . Đỉnh A thuộc tia Oy, đường cao kẻ từ đỉnh C thuộc đường thẳng x + 5y = 0. Tìm tọa độ đỉnh B của tam giác ABC.
A. B (-1;-1)
B. B (0;4)
C. B (5;-1)
D. B (1;9)
Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc với AB,AC ở D,E. Gọi K là giao điểm của AI với (I). Cmr: K là tâm của đường tròn nội tiếp tam giác ADE.
2) Cho tam giác ABC vuông tại A, có đường cao AH, gọi I,J, K lần lượt là tâm đường tròn nội tiếp các tam giác ABC, AHB, AHC.
a) C/m AI vuông góc với JK
b) C/m tứ giác BJKC nội tiếp đuợc đường tròn
ho tam giác abc nội tiếp đường tròn (o,r) goi I là tâm của đường tròn nội tiếp tam giác đó gọi M N P lần lượt là tâm của các đường tròn bàng tiếp trong các góc A, B, C. gọi K là điểm đối xứng của I qua O. Chứng minh rằng K laftaam đường tròn ngoại tiếp tam giác MNP
cách làm thôi nha
GỌi D là gia điểm của AM zới đường tròn (O)
CM các tam giác DBI . DBM cân
=> DI=DM
DO đó OD là đường trung bình của tam giác MIK
=> KM=2OD=2R
Zậy M thuộc đường tròn (K;2R)
tương tự đối zới các điểm N , P
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Trên cạnh BC lấy điểm D sao cho ^ABC = ^CAD. (K) là đường tròn nội tiếp tam giác ADC. E là chân đường phân giác xuất phát từ đỉnh B của tam giác ABC. Tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L. CM tâm đường tròn ngoại tiếp tam giác BLC nằm trên (O) ?
Gọi I là tâm nội tiếp \(\Delta\)ABC, khi đó 3 điểm C,I,K thẳng hàng. Gọi đường tròn ngoại tiếp \(\Delta\)AIE cắt tia CI tại điểm thứ hai F.
Xét \(\Delta\)CKA và \(\Delta\)CIB có: ^ACK = ^BCI (=^ACB/2); ^CAK = ^CBI (=^ABC/2) => \(\Delta\)CKA ~ \(\Delta\)CIB (g.g)
Suy ra: \(\frac{CK}{CI}=\frac{CA}{CB}\). Mà \(\frac{CA}{CB}=\frac{CD}{CA}\)(\(\Delta\)CAD ~ \(\Delta\)CBA) nên \(\frac{CK}{CI}=\frac{CD}{CA}\Rightarrow\frac{CK}{CD}=\frac{CI}{CA}\)
Lại có: CEA và CIF là 2 cát tuyến của (AIE) nên \(\frac{CI}{CA}=\frac{CE}{CF}\). Từ đó: \(\frac{CK}{CD}=\frac{CE}{CF}\)
Suy ra: \(\Delta\)CEK ~ \(\Delta\)CFD (c.g.c) => ^CEK = ^CFD. Nếu ta gọi 2 tia FD và EK cắt nhau ở L' thì ^CEL' = ^CFL'
=> Tứ giác CL'FE nội tiếp => ^ECF = ^EL'F => ^KCD = ^KL'D => Tứ giác CKDL' nội tiếp
Áp dụng phương tích đường tròn có: FK.FC=FD.FL' (1)
Cũng từ \(\Delta\)CKA ~ \(\Delta\)CIB (cmt) => ^BIF = ^AKI hay ^AKF = ^EIC => ^AKF = ^CAF
=> \(\Delta\)AFK ~ \(\Delta\)CFA (g.g) => FA2 = FK.FC (2)
Từ (1) và (2) => FA2 = FD.FL' => \(\Delta\)FDA ~ \(\Delta\)FAL' (c.g.c)
=> ^FL'A = ^FAD = ^DAC - ^FAC = ^ABC - ^FKA = ^ABC - (^KAC + ^ACK) = ^ABC/2 - ^ACB/2
Do đó: ^AL'E = ^FL'A + ^FL'E = ^ABC/2 - ^ACB/2 + ^ACB/2 = ^ABC/2 = ^ABE => Tứ giác ABL'E nội tiếp
Hay tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L' => L' trùng L
Từ đó dễ có: ^BLC = ^ABC/2 + ^ACB + ^ABC/2 + ^BAC/2 = ^ABC + ^ACB + ^BAC/2 = 1800 - ^BAC/2
Vậy thì tâm của đường tròn (BLC) nằm tại điểm chính giữa cung BC chứa A của (O) (đpcm).
cho tam giác ABC nội tiếp đường tròn O,đường tròn K tiếp xúc trong vs đtròn O tại T và tiếp xúc 2 cạnh AB,AC tại E,F chưng minh tâm I đtròn nội tiếp tam giác ABC là trung điểm EF
Bổ sung: ΔABC cân tại A
ΔABC cân tại A
=>AO đi qua trug diểm I của EF
Vẽ IK vuông góc AB tại K, gọi H và G lần lượt là giao của OA với BC và(O)
Vì OE vuông góc AB, IK vuông goc AB, GB vuông góc AB
=>OE//IK//GB
ΔABG có IK//GB
nên IK/BG=AI/AG
=>IK=AI*BG/AG
ΔABH có EI//BH
ΔABE có OE//BG
=>IH/AH=BE/BA=OG/AG và AE/AB=AI/AH
=>IH=AH*OE/AE
ΔABG có OE//BG
nên AB/AE=BG/OE
AH/AI=AB/AE=BG/OE
=>AH*OE=AI*BG
=>AH*OG=AI*BG
=>IK=IH
=>ĐPCM
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trực tâm H(2;3) và phương trình đường tròn đi qua chân các đường cao của tam giác ABC có phương trình (C): x2 + y2 - 4x - 4y +1 =0. Viết phương trình đường tròn ngoại tiếp tam giác ABC