Trong mp xOy cho tam giác ABC có A(2;1),đường phân giác BD:4x-3y-1=0
trung tuyến BM:x+y-1=0
viết PT các cạnh tam giác ABC
Trong mp xOy cho tam giác ABC. bt A(3;-1) B(-1;2) I(1;-1) là trọng tâm của tam giác ABC. Trực tâm H của tam giác ABC có tọa độ (a;b). Tính a+3b
Tọa độ điểm C:
\(\left\{{}\begin{matrix}x_C=3x_I-x_A-x_B=1\\y_C=3y_I-y_A-y_B=-4\end{matrix}\right.\Rightarrow C\left(1;-4\right)\)
Ta có:
\(\overrightarrow{AH}=\left(a-3;b+1\right)\)
\(\overrightarrow{BH}=\left(a+1;b-2\right)\)
\(\overrightarrow{BC}=\left(2;-6\right)\)
\(\overrightarrow{AC}=\left(-2;-3\right)\)
Theo giả thiết
\(AH\perp BC\Rightarrow2\left(a-3\right)-6\left(b+1\right)=0\Leftrightarrow a-3b=6\left(1\right)\)
\(BH\perp AC\Rightarrow-2\left(a+1\right)-3\left(b-2\right)=0\Leftrightarrow2a+3b=4\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\left\{{}\begin{matrix}a=\dfrac{10}{3}\\b=-\dfrac{8}{9}\end{matrix}\right.\Rightarrow a+3b=\dfrac{2}{3}\)
cho xOy vuông. Vẽ tam giác vuông cân ABC có góc A=90^ điểm B thuộc Õ, C thuộc Oy( A,O thuộc 2 nx mp đối nhua bờ BC)( CNROA là tia phân giác của xOy
Trong mp xOy, cho hai điểm B(-1;3) C(3;1), Tìm tọa độ điểm A sao cho tam giác ABC vuông cân tại A
trong mp tọa độ xOy cho tam giác ABC với A(3;0) B(-2;4) C(-4;5) gọi G là trọng tâm tam giác ABC và phép tịnh tiến Tv biến A thành G. trong phép tịnh tiến nói trên G iến thành G' có tọa độ bằng bao nhiu? gọi H là rực tâm của tam giác ABC, tìm ảnh của H qua Tv?
Cho tam giác MNP vuông tại M , khi đó định lý Pytago ta có
a. NP^2 = MP^2 - MN^2
b.MN^2=MP^2 + NP^2
c. MP^2 =NP^2 = MN^2
d.NP^2 = MP^2 + MN^2
Cho tam giác ABC có A= 60 độ , B=70độ thì C có số đo là
a. 40độ
b.50độ
c.60độ
d.70độ
Cho tam giác ABC có trực tâm H, I là trung điểm của cạnh BC . Nếu A,I,H thẳng hàng thì tam giác ABC là tam giác gì
a. tam giác cân tại A
b. tam giác cân tại C
c.tam giác cân tại B
d. tam giác đều
Trong mp Oxy cho tam giác ABC có A(-1;1) B(1;3) và trọng tâm G(-2; -2/3). Tìm M trên Oy sao cho tam giác MBC vuông tại M
Mp xOy, tam giác ABC; BC=2AB. đường trùn tuyến xuất phát từ B d:x+y-2=0 Biết \(\widehat{ABC}=120\) và A(3;1). Tìm tọa độ B, C
Lời giải:
Gọi trung điểm $AC$ là $M$.
Theo định lý cos:
$\cos B=\frac{a^2+c^2-b^2}{2ac}$. Mà theo đề thì $a=2c$ nên:
$\frac{-1}{2}=\cos 120^0=\frac{5c^2-b^2}{4c^2}$
$\Rightarrow b^2=7c^2$
Theo định lý đường trung tuyến:
$BM^2=\frac{c^2+a^2}{2}-\frac{b^2}{4}=\frac{c^2+4c^2}{2}-\frac{7c^2}{4}=\frac{3}{4}c^2$
$AM^2=(\frac{b}{2})^2=\frac{7}{4}c^2$
Từ những số tính toán ở trên suy ra:
$c^2+\frac{3}{4}c^2=\frac{7}{4}c^2\Leftrightarrow AB^2+BM^2=AM^2$ nên theo định lý Pitago đảo thì $ABM$ vuông tại $B$
$\Rightarrow \overrightarrow{u_{AB}}=\overrightarrow{n_{BM}}=(1,1)$
$\Rightarrow \overrightarrow{n_{AB}}=(1,-1)$
PTĐT $AB$: $(x-3)-(y-1)=0\Leftrightarrow x-y-2=0$
$B$ vừa thuộc đt $x+y-2=0$ vừa thuộc ĐT $x-y-2=0$ nên dễ tính $B(2,0)$
---------------------
Gọi tọa độ $C$ là $(t,t')$ thì tọa độ $M$ là $(\frac{3+t}{2}; \frac{t'+1}{2})$
Vì $M\in (x+y-2=0)$ nên: $\frac{3+t}{2}+\frac{t'+1}{2}=0\Leftrightarrow t'=-t$
Theo đề:
$a=2c\Leftrightarrow a^2=4c^2\Leftrightarrow (t-2)^2+(-t)^2=4[(3-2)^2+(1-0)^2]$
$\Leftrightarrow t=1\pm\sqrt{3}$
Vậy............
Trong mp tọa độ Oxy cho tam giác ABC có A(1;0).B(-1;1),C(5;-1). Tọa độ trực tâm H của tam giác ABC là
Giả sử trực tâm của tam giác ABC có tọa độ \(H\left(x;y\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{BC}=\left(6;-2\right)\\\overrightarrow{AH}=\left(x-1;y\right)\end{matrix}\right.\Rightarrow\overrightarrow{BC}\perp\overrightarrow{AH}\Leftrightarrow\overrightarrow{AH}.\overrightarrow{BC}=0\)
\(\Leftrightarrow6\left(x-1\right)-2y=0\)
\(\Leftrightarrow3x-y=3\left(1\right)\)
Lại có:
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-2;1\right)\\\overrightarrow{CH}=\left(x-5;y+1\right)\end{matrix}\right.\Rightarrow\overrightarrow{AB}\perp\overrightarrow{CH}\Leftrightarrow\overrightarrow{CH}.\overrightarrow{AB}=0\)
\(\Leftrightarrow-2\left(x-5\right)+y+1=0\)
\(\Leftrightarrow-2x+y=-11\left(2\right)\)
\(\left(1\right);\left(2\right)\Rightarrow\left\{{}\begin{matrix}x=-8\\y=-27\end{matrix}\right.\Rightarrow H\left(-8;-27\right)\)
Trong mp Oxy cho tam giác ABC có A (2;-4) B (0-2) và điểm C nằm trên đường thẳng d: 3x-y+1=0; diện tích tam giác ABC=1. Tìm tọa độ điểm C
1,Cho góc xOy có đỉnh ngoài tờ giấy,tìm cách đo góc xOy?
2,Cho tam giác ABC có AB=AC,BH vuông góc với AC tại H,lấy điểm M bất kỳ trên BC. Kẻ MN vuông góc với AB,MP vuông góc vs AC.
a)CMR:BH=MN+MP
b)Xác định vị trí điểm M đẻ MN=1/2BH