Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
16 tháng 1 2021 lúc 18:07

Tọa độ điểm C:

\(\left\{{}\begin{matrix}x_C=3x_I-x_A-x_B=1\\y_C=3y_I-y_A-y_B=-4\end{matrix}\right.\Rightarrow C\left(1;-4\right)\)

Ta có: 

\(\overrightarrow{AH}=\left(a-3;b+1\right)\)

\(\overrightarrow{BH}=\left(a+1;b-2\right)\)

\(\overrightarrow{BC}=\left(2;-6\right)\)

\(\overrightarrow{AC}=\left(-2;-3\right)\)

Theo giả thiết 

\(AH\perp BC\Rightarrow2\left(a-3\right)-6\left(b+1\right)=0\Leftrightarrow a-3b=6\left(1\right)\)

\(BH\perp AC\Rightarrow-2\left(a+1\right)-3\left(b-2\right)=0\Leftrightarrow2a+3b=4\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\left\{{}\begin{matrix}a=\dfrac{10}{3}\\b=-\dfrac{8}{9}\end{matrix}\right.\Rightarrow a+3b=\dfrac{2}{3}\)

LaYoLa
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
huỳnh thị diễm my
Xem chi tiết
Hà Linh
Xem chi tiết
sói nguyễn
6 tháng 8 2021 lúc 20:21

B-B-A

Nguyễn Lê Phước Thịnh
6 tháng 8 2021 lúc 21:10

Câu 1: D

Câu 2: B

Câu 3: A

Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Akai Haruma
25 tháng 3 2021 lúc 19:36

Lời giải:

Gọi trung điểm $AC$ là $M$.
Theo định lý cos:

$\cos B=\frac{a^2+c^2-b^2}{2ac}$. Mà theo đề thì $a=2c$ nên:

$\frac{-1}{2}=\cos 120^0=\frac{5c^2-b^2}{4c^2}$

$\Rightarrow b^2=7c^2$

Theo định lý đường trung tuyến:

$BM^2=\frac{c^2+a^2}{2}-\frac{b^2}{4}=\frac{c^2+4c^2}{2}-\frac{7c^2}{4}=\frac{3}{4}c^2$

$AM^2=(\frac{b}{2})^2=\frac{7}{4}c^2$

Từ những số tính toán ở trên suy ra:

$c^2+\frac{3}{4}c^2=\frac{7}{4}c^2\Leftrightarrow AB^2+BM^2=AM^2$ nên theo định lý Pitago đảo thì $ABM$ vuông tại $B$

$\Rightarrow \overrightarrow{u_{AB}}=\overrightarrow{n_{BM}}=(1,1)$

$\Rightarrow \overrightarrow{n_{AB}}=(1,-1)$

PTĐT $AB$: $(x-3)-(y-1)=0\Leftrightarrow x-y-2=0$

$B$ vừa thuộc đt $x+y-2=0$ vừa thuộc ĐT $x-y-2=0$ nên dễ tính $B(2,0)$
---------------------

Gọi tọa độ $C$ là $(t,t')$ thì tọa độ $M$ là $(\frac{3+t}{2}; \frac{t'+1}{2})$

Vì $M\in (x+y-2=0)$ nên: $\frac{3+t}{2}+\frac{t'+1}{2}=0\Leftrightarrow t'=-t$

Theo đề:

$a=2c\Leftrightarrow a^2=4c^2\Leftrightarrow (t-2)^2+(-t)^2=4[(3-2)^2+(1-0)^2]$

$\Leftrightarrow t=1\pm\sqrt{3}$

Vậy............

Nguyễn thị ngọc hoan
Xem chi tiết
Hồng Phúc
23 tháng 1 2021 lúc 16:57

Giả sử trực tâm của tam giác ABC có tọa độ \(H\left(x;y\right)\)

\(\left\{{}\begin{matrix}\overrightarrow{BC}=\left(6;-2\right)\\\overrightarrow{AH}=\left(x-1;y\right)\end{matrix}\right.\Rightarrow\overrightarrow{BC}\perp\overrightarrow{AH}\Leftrightarrow\overrightarrow{AH}.\overrightarrow{BC}=0\)

\(\Leftrightarrow6\left(x-1\right)-2y=0\)

\(\Leftrightarrow3x-y=3\left(1\right)\) 

Lại có:

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-2;1\right)\\\overrightarrow{CH}=\left(x-5;y+1\right)\end{matrix}\right.\Rightarrow\overrightarrow{AB}\perp\overrightarrow{CH}\Leftrightarrow\overrightarrow{CH}.\overrightarrow{AB}=0\)

\(\Leftrightarrow-2\left(x-5\right)+y+1=0\)

\(\Leftrightarrow-2x+y=-11\left(2\right)\)

\(\left(1\right);\left(2\right)\Rightarrow\left\{{}\begin{matrix}x=-8\\y=-27\end{matrix}\right.\Rightarrow H\left(-8;-27\right)\)

Ngô Trúc Lam
Xem chi tiết
Haru Kayano
Xem chi tiết