viết pt đường tròn qua 2 điểm A(0;1) B(2;-2) và tâm nằm trên đường thẳng (d) x-y-2=0
1) Viết pt đường tròn tâm l (1,-1) và đi qua điểm B (1,3) 2) Viết pt đường tròn tâm l (3,-4) và đi qua điểm A (1,3) 3) Viết pt đường tròn tâm l ( -2,4) , đi qua điểm B (-6,1) 4) viết pt đường tròn tâm l (1,-2) và đi qua điểm N ( 3,4) Giúp vs bạn
viết pt đường tròn đi qua 2 điểm A(1,2) B(3,4) và tiếp xúc với d: 3x +y -3 =0
cho đường tròn (c) pt: \(\left(x+1\right)^2+y^2=9.\) viết PT đường thẳng đi qua A(2;3) cắt đường tròn (c) tại 2 điểm M,N so cho MN=6
Đường tròn (C) tâm \(I\left(-1;0\right)\) bán kính \(R=3\)
\(MN=6=2R\Rightarrow MN\) là đường kính
\(\Rightarrow\) Đường thẳng d đi qua tâm I của đường tròn
\(\Rightarrow\) Đường thẳng d là đường thẳng IA
\(\overrightarrow{IA}=\left(3;3\right)=3\left(1;1\right)\Rightarrow\) đường thẳng d nhận (1;-1) là 1 vtpt
Phương trình d:
\(1\left(x-2\right)-1\left(y-3\right)=0\Leftrightarrow x-y+1=0\)
Cho điểm A(-3;-1), B(2;1), đường thẳng d: x-y+1=0.
a. Tính khoảng cách từ A, B đến đường thẳng d.
b. Viết pt đường thẳng d1 đi qua A và vuông góc với d.
c. Viết phương trình đthẳng d2 đi qua B và song song với d.
d. Viết pt đường tròn (C) có tâm I thuộc d và đi qua 2 điểm A, B
cho (c): \(x^2+y^2-4x+2y-15=0\)
có i là tâm ,đường thẳng \(\Delta\) đi qua M (1;-3) cắt đường tròn (c) tại 2 điểm A,B sao cho \(\Delta IAB\) cps diện tích bằng 8. viết PT đường thẳng \(\Delta\)
Đường tròn (C) tâm \(I\left(2;-1\right)\) bán kính \(R=2\sqrt{5}\)
Gọi H là trung điểm AB \(\Rightarrow IH\perp AB\Rightarrow IH=d\left(I;\Delta\right)\)
\(S_{IAB}=\dfrac{1}{2}IH.AB=\dfrac{1}{2}IH.2AH=IH.\sqrt{IA^2-IH^2}=IH.\sqrt{20-IH^2}\)
\(\Rightarrow IH\sqrt{20-IH^2}=8\)
\(\Rightarrow IH^4-20IH^2+64=0\Rightarrow\left[{}\begin{matrix}IH=4\\IH=2\end{matrix}\right.\)
\(\overrightarrow{IM}=\left(-1;-2\right)\Rightarrow IM=\sqrt{5}\), mà \(IH\le IM\Rightarrow IH=2\)
Gọi \(\left(a;b\right)\) là 1 vtpt của \(\Delta\) với a;b không đồng thời bằng 0
\(\Rightarrow\) Phương trình \(\Delta\): \(a\left(x-1\right)+b\left(y+3\right)=0\Leftrightarrow ax+by-a+3b=0\)
\(d\left(I;\Delta\right)=IH\Leftrightarrow\dfrac{\left|2a-b-a+3b\right|}{\sqrt{a^2+b^2}}=2\)
\(\Leftrightarrow\left|a+2b\right|=2\sqrt{a^2+b^2}\)
\(\Leftrightarrow a^2+4ab+4b^2=4a^2+4b^2\)
\(\Rightarrow3a^2-4ab=0\Rightarrow\left[{}\begin{matrix}a=0\\3a=4b\end{matrix}\right.\)
Chọn \(\left[{}\begin{matrix}\left(a;b\right)=\left(0;1\right)\\\left(a;b\right)=\left(4;3\right)\end{matrix}\right.\) \(\Rightarrow\) có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}y+3=0\\4x+3y+5=0\end{matrix}\right.\)
Cho đường tròn (C): x2+y2-4x+8y-5=0
a) Tìm toạ độ tâm, bán kính của (C)
b) Viết pt tiếp tuyến của (C) đi qua điểm A(-1;0)
c) Viết pt tiếp tuyến của (C) vuông góc với đường thẳng 3x-4y+5=0
a.
Ta có: \(\left\{{}\begin{matrix}-4a=-2\\8b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-4\end{matrix}\right.\) \(\Rightarrow I\left(2;-4\right)\)
\(R=\sqrt{2^2+\left(-4\right)^2+5}=5\)
b.
PTTT: \(\left(C\right):\left(a-x_0\right)\left(x-x_0\right)+\left(b-y_0\right)\left(y-y_0\right)=0\)
\(\Leftrightarrow\left(2+1\right)\left(x+1\right)+\left(-4-0\right)\left(y-0\right)=0\)
\(\Leftrightarrow\left(C\right):3x-4y=-3\)
c.
Ta có: \(\Delta\perp d\Rightarrow\Delta:4x+3y+c=0\)
\(d\left(I,\Delta\right):\dfrac{\left|4\cdot2-3\cdot4+c\right|}{\sqrt{4^2+3^2}}=5\)
\(\Leftrightarrow\left|c-4\right|=25\) \(\Leftrightarrow\left[{}\begin{matrix}c=29\\c=-21\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\Delta:4x+3y+29=0\\\Delta:4x+3y-21=0\end{matrix}\right.\)
\(A(1;-2),B(3;4),C(-1;0)\)
a) Viết pt đường tròn đi qua A,B và có R=5
b) Viết pt đường tròn đi qua A,B và tiếp xúc với đường thẳng AC
a, Phương trình đường thẳng AB: \(\dfrac{x-3}{2}=\dfrac{y-4}{6}\Leftrightarrow3x-y-5=0\)
Trung điểm I của AB có tọa độ: \(\left\{{}\begin{matrix}x_I=\dfrac{1+3}{2}=2\\y_I=\dfrac{4-2}{2}=1\end{matrix}\right.\Rightarrow I=\left(2;1\right)\)
Phương trình trung trực của AB: \(x+3y-5=0\)
Giả sử \(O=\left(5-3m;m\right)\) là tâm đường tròn
Ta có: \(OA=5\Leftrightarrow\left(3m-4\right)^2+\left(m+2\right)^2=25\)
\(\Leftrightarrow\left(3m-4\right)^2+\left(m+2\right)^2=25\)
\(\Leftrightarrow2m^2-4m-1=0\)
\(\Leftrightarrow m=\dfrac{2\pm\sqrt{6}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}O=\left(\dfrac{4-3\sqrt{6}}{2};\dfrac{2+\sqrt{6}}{2}\right)\\O=\left(\dfrac{4+3\sqrt{6}}{2};\dfrac{2-\sqrt{6}}{2}\right)\end{matrix}\right.\)
TH1: \(O=\left(\dfrac{4-3\sqrt{6}}{2};\dfrac{2+\sqrt{6}}{2}\right)\)
Phương trình đường tròn:
\(\left(x-\dfrac{4-3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2+\sqrt{6}}{2}\right)^2=25\)
TH2: \(O=\left(\dfrac{4+3\sqrt{6}}{2};\dfrac{2-\sqrt{6}}{2}\right)\)
Phương trình đường tròn:
\(\left(x-\dfrac{4+3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2-\sqrt{6}}{2}\right)^2=25\)
Kết luận: Phương trình đường tròn:
\(\left(x-\dfrac{4-3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2+\sqrt{6}}{2}\right)^2=25\) hoặc \(\left(x-\dfrac{4+3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2-\sqrt{6}}{2}\right)^2=25\)
b, Phương trình đường thẳng AC: \(x+y+1=0\)
Phương trình đường thẳng OA: \(x-y-3=0\)
Giả sử \(O=\left(m;m-3\right)\) là tâm đường tròn
Ta có: \(OA=OB\Leftrightarrow\left(1-m\right)^2+\left(1-m\right)^2=\left(3-m\right)^2+\left(7-m\right)^2\)
\(\Leftrightarrow m=\dfrac{7}{2}\)
\(\Rightarrow O=\left(\dfrac{7}{2};\dfrac{1}{2}\right)\)
Bán kính: \(R=OA=\sqrt{\left(1-\dfrac{7}{2}\right)^2+\left(-2-\dfrac{1}{2}\right)^2}=\dfrac{5\sqrt{2}}{2}\)
Phương trình đường tròn:
\(\left(x-\dfrac{7}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2=\dfrac{25}{2}\)
1) Viết phương trình đường tròn đi qua A(1; 3) và tiếp xúc với 2 đường thẳng 5x+y-3=0 và -2x+7y-1 = 0
2) Viết pt đường tròn tâm thuộc đường thẳng 2x+y-0 và tiếp xúc với (d) x-7y+10=0 tại A(4;3)
1.
Gọi \(I\left(x;y\right)\) là tâm đường tròn \(\Rightarrow\overrightarrow{AI}=\left(x-1;y-3\right)\)
Do đường tròn tiếp xúc với \(d_1;d_2\) nên:
\(d\left(I;d_1\right)=d\left(I;d_2\right)\Rightarrow\dfrac{\left|5x+y-3\right|}{\sqrt{26}}=\dfrac{\left|2x-7y+1\right|}{\sqrt{53}}\)
Chà, đề đúng ko em nhỉ, thế này thì vẫn làm được nhưng rõ ràng nhìn 2 cái mẫu kia thì số liệu sẽ xấu 1 cách vô lý.
2.
Phương trình đường thẳng kia là gì nhỉ? \(2x+y=0\) à?
Câu 6: Trong mặt phẳng với hệ toạ độ Oxy a) Viết pt đường tròn (C) có đường kính AB biết A(-1;1) và B(0;2). b) Cho đường tròn (C): x^2 +y^2 -2x -4y+3=0.Viết pt tiếp tuyến của đường tròn (C) tại giao điểm của (C) với trục tung Oy
a, Đường tròn cần tìm có tâm \(I=\left(-\dfrac{1}{2};\dfrac{3}{2}\right)\), bán kính \(R=\dfrac{\sqrt{2}}{2}\)
Phương trình đường tròn: \(\left(x+\dfrac{1}{2}\right)^2+\left(y-\dfrac{3}{2}\right)^2=\dfrac{1}{2}\)
b, (C) có tâm \(I=\left(1;2\right)\), bán kính \(R=\sqrt{2}\)
Giao điểm của (C) và trục tung có tọa độ là nghiệm hệ:
\(\left\{{}\begin{matrix}x^2+y^2-2x-4y+3=0\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y^2-4y+3=0\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}y=1\\x=0\end{matrix}\right.\)
\(\Rightarrow\) Giao điểm: \(M=\left(0;3\right);N=\left(0;1\right)\)
Phương trình tiếp tuyến tại M có dạng: \(\Delta_1:ax+by-3b=0\left(a^2+b^2\ne0\right)\)
Ta có: \(d\left(I;\Delta_1\right)=\dfrac{\left|a+2b-3b\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\)
\(\Leftrightarrow a^2+b^2-2ab=2a^2+2b^2\)
\(\Leftrightarrow\left(a+b\right)^2=0\)
\(\Leftrightarrow a=-b\)
\(\Rightarrow\Delta_1:x-y+3=0\)
Tương tự ta tìm được tiếp tuyến tại N: \(\Delta_2=x+y-1=0\)