Cho (C) : (x-4)2 + y2 = 25 và điểm M(1;-1). Tìm đường thẳng Δ qua M và cắt đường tròn (C) tại 2 điểm phân biệt A,B sao cho MA = 3MB.
y = \(\dfrac{1}{8}x^4\) - \(\dfrac{7}{4}x^2\) (C). Có bao nhiêu điểm A thuộc (C) sao cho tiếp tuyến của (C) tại A cắt (C) tại 2 điểm phân biệt M(x1;y1), N(x2;y2) (M, N khác A) thỏa mãn:
y1 - y2 = 3(x1 - x2)
\(y'=\dfrac{1}{2}x^3-\dfrac{7}{2}x\)
Chỉ cần để ý 1 lý thuyết:
Đường thẳng đi qua 2 điểm \(A\left(x_1;y_1\right)\) và \(B\left(x_2;y_2\right)\) sẽ có hệ số góc \(k=\dfrac{y_1-y_2}{x_1-x_2}\)
Do đó ta có hệ số góc của đường thẳng MN là \(k=3\)
\(\Rightarrow\dfrac{1}{2}x^3-\dfrac{7}{2}x=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\\x=3\end{matrix}\right.\) (sao lắm nghiệm vậy trời)
Biết hoành độ 3 tiếp điểm, bạn viết 3 pt tiếp tuyến rồi xét pt hoành độ với (C) coi cái nào có 4 nghiệm (trong đó có 1 nghiệm kép) thì nhận
Trong không gian Oxyz cho hai điểm A(2;-3;2), B(-2;1;4) và mặt cầu ( S ) : ( x + 1 ) 2 + y 2 + ( z - 4 ) 2 = 12 . Điểm M(a,b,c) thuộc mặt cầu (S) sao cho M A → . M B → nhỏ nhất, tính a+b+c
A. 7 3
B. -4
C. 1
D. 4
Cho đường tròn \(\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 25\) và điểm \(M\left( {4; - 2} \right)\).
a) Chứng minh điểm \(M\left( {4; - 2} \right)\) thuộc đường tròn \(\left( C \right)\).
b) Xác định tâm và bán kính đường tròn \(\left( C \right)\).
c) Gọi \(\Delta \) là tiếp tuyến của \(\left( C \right)\) tại M. Hãy chỉ ra một vecto pháp tuyến của đường thẳng \(\Delta \). Từ đó, viết phương trình đường thẳng \(\Delta \).
a) Thay tọa độ điểm \(M\left( {4; - 2} \right)\) vào phương trình đường tròn ta được: \({\left( {4 - 1} \right)^2} + {\left( { - 2 - 2} \right)^2} = {3^2} + {4^2} = 25\). Vậy điểm M thỏa mãn phương trình đường tròn \(\left( C \right)\).
b) Đường tròn \(\left( C \right)\) có tâm \(I\left( {1;2} \right)\) và \(R = 5\).
c) Ta có: \(\overrightarrow {{n_\Delta }} = \overrightarrow {IM} = \left( {3; - 4} \right)\). Vậy phương trình tiếp tuyến \(\Delta \) của đường tròn \(\left( C \right)\) là:
\(3\left( {x - 4} \right) - 4\left( {y + 2} \right) = 0 \Leftrightarrow 3x - 4y - 20 = 0\)
Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x^2 và
đường thẳng (d) có phương trình y = 5x - m + 2 (m là tham số)
1) Điểm A(2;4) có thuộc đồ thị hàm số (P) không ? Tại sao?
2) Tìm m để đường thẳng (d) cắt parabol (P) tại 2 điểm phân biệt có tung độ y1; y2 thỏa mãn y1 + y2 + y1.y2 = 25
Câu 1 : Cho sin x=4/5. Tính cos x
Câu 2: Cho (C): (x-2)^+(y+1)^=25
Xác định tâm và bán kính của (C).Viết phương trình tiếp tuyến của (C) tại điểm M(5;3)
Câu 1:
\(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-sin^2x=1-\left(\frac{4}{5}\right)^2=\frac{9}{15}\)
\(\Leftrightarrow cos^2x=\frac{\pm3}{5}\).
Câu 2:
Đường tròn \(\left(C\right)\)có tâm \(I\left(2,-1\right)\)bán kính \(R=\sqrt{25}=5\).
Gọi \(d\)là tiếp tuyến của đường tròn \(\left(C\right)\)tại điểm \(M\). Khi đó \(IM\)và \(d\)vuông góc với nhau.
\(\Rightarrow\overrightarrow{IM}=\left(3,4\right)\)là một vector pháp tuyến của \(d\)
Suy ra phương trình \(d:3\left(x-5\right)+4\left(y-3\right)=0\Leftrightarrow3x+4y-27=0\).
Trong mặt phẳng tọa độ Oxy, cho điểm M(1;-2) và đường tròn (C): (x-2)2 + y2 =10. Số tiếp tuyến kẻ từ điểm M tới đường tròn (C) là :
A.2 B.1 C.0 D. vô số
Bán kính đường tròn: \(R=\sqrt{10}\)
\(O=\left(2;0\right)\) là tâm đường tròn
\(\Rightarrow OM=\sqrt{\left(1-2\right)^2+\left(-2-0\right)^2}=\sqrt{5}< R=\sqrt{10}\)
\(\Rightarrow M\) nằm trong đường tròn
Kết luận: Số tiếp tuyến kẻ được từ M đến đường tròn (C) là 0.
Cho \(\left(P\right):y=x^2\) và \(\left(d\right):y=mx+1\). Tìm m để (d) cắt (P) tại điểm A(x1,y1) và B(x2,y2) sao cho y1+y2=y1.y2. Gọi trung điểm của AB là M. Tìm quỹ tích M
Pt hoành độ giao điểm: \(x^2-mx-1=0\)
\(ac=-1< 0\Rightarrow\) (d) luôn cắt (P) tại 2 điểm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-1\end{matrix}\right.\)
\(y_1+y_2=y_1y_2\Leftrightarrow mx_1+1+mx_2+1=x_1^2x_2^2\)
\(\Leftrightarrow m\left(x_1+x_2\right)+2=1\)
\(\Leftrightarrow m^2+1=0\) (vô nghiệm)
Vậy ko tồn tại m thỏa mãn đều bài
\(x_M=\dfrac{x_A+x_B}{2}=\dfrac{m}{2}\) ;
\(y_M=\dfrac{y_A+y_B}{2}=\dfrac{mx_A+1+mx_B+1}{2}=\dfrac{m\left(x_A+x_B\right)+2}{2}=\dfrac{m^2+2}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}m=2x_M\\m^2=2y_M-2\end{matrix}\right.\)
\(\Rightarrow\left(2x_M\right)^2=2y_M-2\)
\(\Rightarrow y_M=2x_M^2+1\)
\(\Rightarrow\) Quỹ tích M là parabol có pt \(y=2x^2+1\)
B1: cho hàm số \(\frac{1}{2}x^2\)(P)
a, Tìm giá trị của m để đường thẳng (d) : y = (m-4)x+m+1 cắt đồ thì hàm số trên tại điểm aA có hoành độ bằng 2. Rồi tìm tọa độ thứ 2 khác A.
b,Cmr với mọi giá trị của m thì đường thẳng (d) và parabol (P) cắt nhau tại 2 điểm phân biệt.
c, Gọi y1;y2 là tung độ giao điểm của đồ thị (d) và (P). Tìm m để y1+y2 đạt GTNN
BT: cho hàm số :y= \(\frac{1}{2}x^2\)(P)
a, Tìm giá trị của m để đường thẳng (d) : y = (m-4)x+m+1 cắt đồ thì hàm số trên tại điểm aA có hoành độ bằng 2. Rồi tìm tọa độ thứ 2 khác A.
b,Cmr với mọi giá trị của m thì đường thẳng (d) và parabol (P) cắt nhau tại 2 điểm phân biệt.
c, Gọi y1;y2 là tung độ giao điểm của đồ thị (d) và (P). Tìm m để y1+y2 đạt GTNN