Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Tứ
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 7 2023 lúc 19:50

a: A=2/3x^2y+4x^2y=14/3x^2y

=14/3*9*7=294

b: B=xy^2(1/2+1/3+1/6)=xy^2=3/4*1/4=3/16

c: C=x^3y^3(2+10-20)=-8x^3y^3

=-8*1^3(-1)^3=8

d: D=xy^2(2018+16-2016)

=18xy^2

=18(-2)*1/9=-4

Phạm Bảo Luân
Xem chi tiết
Toru
20 tháng 9 2023 lúc 20:45

\(d) (x+1)^3-6y(x+1)^2+12y^2(x+1)-8y^3\)

\(=\left(x+1\right)^3-3\cdot\left(x+1\right)^2\cdot2y+3\cdot\left(x+1\right)\cdot\left(2y\right)^2-\left(2y\right)^3\)

\(=\left[\left(x+1\right)-2y\right]^3\)

\(=\left(x-2y+1\right)^3\)     (1)

Thay \(x=2;y=1,5\) vào (1), ta được:

\(\left(2-2\cdot1,5+1\right)^3\)

\(=\left(2-3+1\right)^3\)

\(=0\)

 \(---\)

\(e,\left(x-2\right)^3+3y\left(x-2\right)^2+3y^2\left(x-2\right)+y^3\) (sửa đề)

\(=\left(x-2\right)^3+3\cdot\left(x-2\right)^2\cdot y+3\cdot\left(x-2\right)\cdot y^2+y^3\)

\(=\left[\left(x-2\right)+y\right]^3\)

\(=\left(x+y-2\right)^3\)   (2)

Thay \(x+y=7\) vào (2), ta được:

\(\left(7-2\right)^3=5^3=125\)

#\(Toru\)

Akai Haruma
20 tháng 9 2023 lúc 20:48

Lời giải:
Áp dụng hằng đẳng thức đáng nhớ:

d. $=[(x+1)-(2y)]^3=(2+1-2.1,5)^3=(3-3)^3=0$

e. Sửa đề: $(x-2)^3+3y(x-2)^2+3y^2(x-2)+y^3$

$=(x-2+y)^3=(x+y-2)^3=(7-2)^3=5^3=125$

Hai Hien
Xem chi tiết
Nguyễn Hoàng Minh
3 tháng 9 2021 lúc 15:20

\(a,\left(2x-1\right)^2-\left(x-3\right)\left(x+3\right)-1969\\ =4x^2-4x+1-x^2+9-1969\\ =3x^2-4x-1959\)

\(b,\left(2x-3y\right)\left(2x+3y\right)-\left(2x-y\right)^2\\ =4x^2-9y^2-4x^2+4xy-y^2\\ =8y^2+4xy=4y\left(2y+x\right)\)

\(c,\left(x+3y\right)^2+\left(x+y\right)\left(x-y\right)+280\\ =x^2+6xy+9y^2+x^2-y^2+280\\ =2x^2+8y^2+6xy+280\)

Nguyễn Lê Phước Thịnh
3 tháng 9 2021 lúc 15:25

a: \(\left(2x-1\right)^2-\left(x-3\right)\cdot\left(x+3\right)-1969\)

\(=4x^2-4x+1-x^2+9-1969\)

\(=3x^2-4x-1959\)

b: \(\left(2x-3y\right)\left(2x+3y\right)-\left(2x-y\right)^2\)

\(=4x^2-9y^2-4x^2+4xy-y^2\)

\(=-10y^2+4xy\)

Nguyễn Đình An
3 tháng 9 2021 lúc 15:31

a)\(\text{( 2 x − 1 )^2− ( x − 3 ) ( x + 3 ) − 1969}\)

\(\text{= 4x^2 − 4x + 1 − x^2 + 9 − 1969}\)

\(\text{=3x^2− 4 x − 1959}\)

b) \(\text{( 2 x − 3 y ) ( 2 x + 3 y ) − ( 2 x − y )^2}\)

=\(\text{= 4 x^2− 9 y^2− 4 x^2 + 4 x y − y^2}\)

\(\text{= -10 y^2+ 4 x y = -2 y ( 5 y -2 x )}\)

c)\(\text{( x + 3 y )^2 + ( x + y ) ( x − y ) + 280}\)

\(\text{= x^2 + 6 x y + 9 y^2 + x^2 − y^2 + 280}\)

\(\text{= 2 x^2 + 8 y^2 + 6 x y + 280}\)

Ha Thù
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 10 2023 lúc 15:07

loading...  loading...  loading...  loading...  loading...  

『Kuroba ム Tsuki Ryoo...
10 tháng 10 2023 lúc 15:21

`#3107.101117`

a)

`x \div y \div z = 4 \div 3 \div 9`

`=> x/4 = y/3 = z/9`

`=> x/4 = (3y)/9 = (4z)/36`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/4 = (3y)/9 = (2z)/8 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2`

`=> x/4 = y/3 = z/9 = 2`

`=> x = 4*2 = 8` $\\$ `y = 3*2 = 6` $\\$ `z = 9*2 = 18`

Vậy, `x = 8; y = 6; z = 18`

c)

\(x \div y \div z = 1 \div 2 \div 3\)

`=> x/1 = y/2 = z/3`

`=> (4x)/4 = (3y)/6 = (2z)/6`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`(4x)/4 = (3y)/6 = (2z)/6 = (4x - 3y + 2z)/(4 - 6 + 6) = 36/4 = 9`

`=> x/1 = y/2 = z/3 = 9`

`=> x = 1*9=9` $\\$ `y = 2*9 = 18` $\\$ `z = 3*9 = 27`

Vậy, `x = 9; y = 18; z = 27`

Các câu còn lại cậu làm tương tự nhé.

Trần Hoàng Minh
Xem chi tiết
Nguyễn Linh Chi
29 tháng 4 2020 lúc 12:29

Tại x = 1 và y = 1 ta có: 

B = 1 -1 + 3 -1 = 2

Khách vãng lai đã xóa
๖²⁴ʱ๖ۣۜTɦủү❄吻༉
2 tháng 5 2020 lúc 15:45

\(x^3y^3-x^3y^2+3x^2y^3x^3=-x^3y^2+3x^2y^3\)

Ta thay x = 1 ; y = 1 vì x = y = 1 

Nên ta có : \(-1^3.1^2+3.1^2.1^3=-1.1+3.1.1=-1+3=2\)

Khách vãng lai đã xóa
Trần Ngọc Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 7 2022 lúc 13:56

1: \(F=\left(\dfrac{-1}{2}-2\right)^3-\left(-\dfrac{1}{2}+3\right)^3+\left(-2+\dfrac{3}{2}\right)^3+\left(-\dfrac{1}{2}+1\right)^2\)

\(=\dfrac{-125}{8}-\dfrac{125}{8}+\dfrac{-1}{8}+\dfrac{1}{4}\)

\(=\dfrac{-251}{8}+\dfrac{1}{4}=\dfrac{-249}{8}\)

2:\(N=\left(-1-1\right)^2-\left(-1+\dfrac{1}{8}\right)+\left(-1+1\right)^3\)

=4+1-1/8

=5-1/8=39/8

Loan Tran
Xem chi tiết
Akai Haruma
17 tháng 9 2023 lúc 17:52

Lời giải:

a. $=(x-y)(x+y)=[(-1)-(-3)][(-1)+(-3)]=2(-4)=-8$
b. $=3x^4-2xy^3+x^3y^2+3x^2y+12xy+15y-12xy-12$

$=3x^4-2xy^3+x^3y^2+3x^2y+15y-12$
=3-2.1(-2)^3+1^3.(-2)^2+3.1^2(-2)+15(-2)-12$
$=-25$
c.

$=2x^4+3x^3y-4x^3y-12xy+12xy=2x^4-x^3y$

$=x^3(2x-y)=(-1)^3[2(-1)-2]=-1.(-4)=4$

d. 

$=2x^2y+4x^2-5xy^2-10x+3xy^2-3x^2y$

$=(2x^2y-3x^2y)+4x^2+(-5xy^2+3xy^2)-10x$

$=-x^2y+4x^2-2xy^2-10x$

$=-3^2.(-2)+4.3^2-2.3(-2)^2-10.3=0$

nguyễn ngọc quyền linh
Xem chi tiết

Gợi ý nhá

Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.

b)  Bạn chỉ cần cho tử và mẫu mũ 3 lên.  theé là dễ r

Nguyệt
27 tháng 10 2018 lúc 20:33

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

tự tính tiếp =)

Part Jimin
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 1 2022 lúc 17:41

\(a,\left\{{}\begin{matrix}\left|x-3y\right|\ge0\\\left|y+4\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3y=-12\\y=-4\end{matrix}\right.\)

\(b,Sửa:\left|x-y-5\right|+\left(y+3\right)^2=0\\ \left\{{}\begin{matrix}\left|x-y-5\right|\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-y-5=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+5=2\\y=-3\end{matrix}\right.\)

\(c,\left\{{}\begin{matrix}\left|x+y-1\right|\ge0\\\left(y-2\right)^4\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-y=-1\\y=2\end{matrix}\right.\)

\(d,\left\{{}\begin{matrix}\left|x+3y-1\right|\ge0\\3\left|y+2\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+3y-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-3y=7\\y=-2\end{matrix}\right.\)

\(e,Sửa:\left|2021-x\right|+\left|2y-2022\right|=0\\ \left\{{}\begin{matrix}\left|2021-x\right|\ge0\\\left|2y-2022\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2021-x=0\\2y-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\y=1011\end{matrix}\right.\)