BÀI 1
c)C= (x-3y)^3+3(x-3y)^2(x+y)+3(x-3y)(x+y)^2+(x+y)^3 tại x=1 ; y=1
BÀI 9: TÍNH GIÁ TRỊ BIỂU THỨC
a) 2/3x^2y + 3x^2y + x^2y tại x=3 y=7
b) 1/2xy^2 + 1/3xy^2 + 1/6xy^2 tại x=3/4 y= -1/2
c) 2x^3y^3 + 10x^3y^3 - 20x^3y^3 tại x =1 y= -1
d) 2018xy^2 + 16xy^2 - 2016xy^2 tại x= -2 y= -1/3
a: A=2/3x^2y+4x^2y=14/3x^2y
=14/3*9*7=294
b: B=xy^2(1/2+1/3+1/6)=xy^2=3/4*1/4=3/16
c: C=x^3y^3(2+10-20)=-8x^3y^3
=-8*1^3(-1)^3=8
d: D=xy^2(2018+16-2016)
=18xy^2
=18(-2)*1/9=-4
d) (x+1)^3-6y(x+1)^2+12y^2(x+1)-8y^3 tại x=2;y=1,5
e) (x-2)^3+3y(x-2)+3y^2(x-2)+y^3 tại x+y=7
\(d) (x+1)^3-6y(x+1)^2+12y^2(x+1)-8y^3\)
\(=\left(x+1\right)^3-3\cdot\left(x+1\right)^2\cdot2y+3\cdot\left(x+1\right)\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=\left[\left(x+1\right)-2y\right]^3\)
\(=\left(x-2y+1\right)^3\) (1)
Thay \(x=2;y=1,5\) vào (1), ta được:
\(\left(2-2\cdot1,5+1\right)^3\)
\(=\left(2-3+1\right)^3\)
\(=0\)
\(---\)
\(e,\left(x-2\right)^3+3y\left(x-2\right)^2+3y^2\left(x-2\right)+y^3\) (sửa đề)
\(=\left(x-2\right)^3+3\cdot\left(x-2\right)^2\cdot y+3\cdot\left(x-2\right)\cdot y^2+y^3\)
\(=\left[\left(x-2\right)+y\right]^3\)
\(=\left(x+y-2\right)^3\) (2)
Thay \(x+y=7\) vào (2), ta được:
\(\left(7-2\right)^3=5^3=125\)
#\(Toru\)
Lời giải:
Áp dụng hằng đẳng thức đáng nhớ:
d. $=[(x+1)-(2y)]^3=(2+1-2.1,5)^3=(3-3)^3=0$
e. Sửa đề: $(x-2)^3+3y(x-2)^2+3y^2(x-2)+y^3$
$=(x-2+y)^3=(x+y-2)^3=(7-2)^3=5^3=125$
Rút gọn mỗi biểu thức sau:
a, (2x-1)\(^2\)-(x-3).(x+3)-1969
b, (2x-3y).(2x+3y)-(2x-y)\(^2\)
c, (x+3y)\(^2\)+(x-y).(x+y)+280
\(a,\left(2x-1\right)^2-\left(x-3\right)\left(x+3\right)-1969\\ =4x^2-4x+1-x^2+9-1969\\ =3x^2-4x-1959\)
\(b,\left(2x-3y\right)\left(2x+3y\right)-\left(2x-y\right)^2\\ =4x^2-9y^2-4x^2+4xy-y^2\\ =8y^2+4xy=4y\left(2y+x\right)\)
\(c,\left(x+3y\right)^2+\left(x+y\right)\left(x-y\right)+280\\ =x^2+6xy+9y^2+x^2-y^2+280\\ =2x^2+8y^2+6xy+280\)
a: \(\left(2x-1\right)^2-\left(x-3\right)\cdot\left(x+3\right)-1969\)
\(=4x^2-4x+1-x^2+9-1969\)
\(=3x^2-4x-1959\)
b: \(\left(2x-3y\right)\left(2x+3y\right)-\left(2x-y\right)^2\)
\(=4x^2-9y^2-4x^2+4xy-y^2\)
\(=-10y^2+4xy\)
a)\(\text{( 2 x − 1 )^2− ( x − 3 ) ( x + 3 ) − 1969}\)
\(\text{= 4x^2 − 4x + 1 − x^2 + 9 − 1969}\)
\(\text{=3x^2− 4 x − 1959}\)
b) \(\text{( 2 x − 3 y ) ( 2 x + 3 y ) − ( 2 x − y )^2}\)
=\(\text{= 4 x^2− 9 y^2− 4 x^2 + 4 x y − y^2}\)
\(\text{= -10 y^2+ 4 x y = -2 y ( 5 y -2 x )}\)
c)\(\text{( x + 3 y )^2 + ( x + y ) ( x − y ) + 280}\)
\(\text{= x^2 + 6 x y + 9 y^2 + x^2 − y^2 + 280}\)
\(\text{= 2 x^2 + 8 y^2 + 6 x y + 280}\)
Bài 3: Tìm x,y,z biết
a) x : y : z =4: 3 :9 và x - 3y + 4z = 62
c) x : y : z = 1 : 2 : 3 và 4x - 3y + 2z = 36
e) x : y : z = 2 : 3 : 4 và x + 2y - 3z = -20
g) x : y : (- z ) = 3 : 8 : 5 và 4x + 3y + 2z = 52
i) x : y : z = 3 : 5 : (-2) và 5x - y + 3z = 124
`#3107.101117`
a)
`x \div y \div z = 4 \div 3 \div 9`
`=> x/4 = y/3 = z/9`
`=> x/4 = (3y)/9 = (4z)/36`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/4 = (3y)/9 = (2z)/8 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2`
`=> x/4 = y/3 = z/9 = 2`
`=> x = 4*2 = 8` $\\$ `y = 3*2 = 6` $\\$ `z = 9*2 = 18`
Vậy, `x = 8; y = 6; z = 18`
c)
\(x \div y \div z = 1 \div 2 \div 3\)
`=> x/1 = y/2 = z/3`
`=> (4x)/4 = (3y)/6 = (2z)/6`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(4x)/4 = (3y)/6 = (2z)/6 = (4x - 3y + 2z)/(4 - 6 + 6) = 36/4 = 9`
`=> x/1 = y/2 = z/3 = 9`
`=> x = 1*9=9` $\\$ `y = 2*9 = 18` $\\$ `z = 3*9 = 27`
Vậy, `x = 9; y = 18; z = 27`
Các câu còn lại cậu làm tương tự nhé.
B=x^3y^3- x^3y^2+3x^2y^3-y^3x^3 tại x=y=1
Tại x = 1 và y = 1 ta có:
B = 1 -1 + 3 -1 = 2
\(x^3y^3-x^3y^2+3x^2y^3x^3=-x^3y^2+3x^2y^3\)
Ta thay x = 1 ; y = 1 vì x = y = 1
Nên ta có : \(-1^3.1^2+3.1^2.1^3=-1.1+3.1.1=-1+3=2\)
Rút gọn và tính giá trị của biểu thức sau :
1) F = ( x + 2y )3 - ( x - 3y )2 + ( 2y - 3x )3 + ( x - y )2 tại x = -1/2 ; y = -1
2) N = ( x - 2y )2 - ( x + y )( x2 - xy + y2 ) + ( x + 2y )3 tại x = -1 ; y = 1/2
3) U = ( x + 3y )3 - ( x + 3y )( x2 - 3xy + 9y2 ) - 2x ( x - 2 )2 tại x = 1 ; y = 2
Các bạn giải gấp cho mình 3 câu này nha. Mình đag cần gấp
1: \(F=\left(\dfrac{-1}{2}-2\right)^3-\left(-\dfrac{1}{2}+3\right)^3+\left(-2+\dfrac{3}{2}\right)^3+\left(-\dfrac{1}{2}+1\right)^2\)
\(=\dfrac{-125}{8}-\dfrac{125}{8}+\dfrac{-1}{8}+\dfrac{1}{4}\)
\(=\dfrac{-251}{8}+\dfrac{1}{4}=\dfrac{-249}{8}\)
2:\(N=\left(-1-1\right)^2-\left(-1+\dfrac{1}{8}\right)+\left(-1+1\right)^3\)
=4+1-1/8
=5-1/8=39/8
Bài 9:Rút gọn rồi tính giá trị
a) x(x-y)+y(x-y) tại x=-1; y=-3
b)x3(3x-2y+y2)+3y(x2+4x+5)-12(xy+1) tại x=1;y=-2
c)x3(2x+3y)-4y(x3+3x)+12xy x=-1; y=2
d)2x2(y+2)-5x(y2+2)+3xy(y-x) tại x=3; y=-2
Lời giải:
a. $=(x-y)(x+y)=[(-1)-(-3)][(-1)+(-3)]=2(-4)=-8$
b. $=3x^4-2xy^3+x^3y^2+3x^2y+12xy+15y-12xy-12$
$=3x^4-2xy^3+x^3y^2+3x^2y+15y-12$
=3-2.1(-2)^3+1^3.(-2)^2+3.1^2(-2)+15(-2)-12$
$=-25$
c.
$=2x^4+3x^3y-4x^3y-12xy+12xy=2x^4-x^3y$
$=x^3(2x-y)=(-1)^3[2(-1)-2]=-1.(-4)=4$
d.
$=2x^2y+4x^2-5xy^2-10x+3xy^2-3x^2y$
$=(2x^2y-3x^2y)+4x^2+(-5xy^2+3xy^2)-10x$
$=-x^2y+4x^2-2xy^2-10x$
$=-3^2.(-2)+4.3^2-2.3(-2)^2-10.3=0$
Bài 3 : a) Tìm x,y,z biết :
2x = 3y ; 4y = 5z và 4x - 3y + 5z = 7
b) x^3 phần 8 = y ^3 phần 64 = z^3 phần 216 và x^2 +y^2 + z^2 = 14
Bài 4 : Cho 3 số x,y,z khác 0 thỏa mãn :
y + z - x phần x = z + x - y phần y = x + y - z phần z hãy tính giá trị biểu thức :
C = ( 1 + y phần x ) ( 1 + y phần z ) ( 1 + z phần x )
Bài 5 : Tìm x,y,z biết : 2x = 3y = 5z và | x - 2y | = 5
Gợi ý nhá
Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.
b) Bạn chỉ cần cho tử và mẫu mũ 3 lên. theé là dễ r
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
tự tính tiếp =)
Tìm các cặp số (x;y) nguyên thoả mãn:
a) |x - 3y| + |y + 4| = 0
b) |x - y - 5| + ( y + 3 ) ²
c) |x + y - 1| + ( y - 2)^4 = 0
d) |x + 3y - 1| + 3.| y + 2|= 0
e) |2021 - x| + 2y - 2022| = 0
\(a,\left\{{}\begin{matrix}\left|x-3y\right|\ge0\\\left|y+4\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3y=-12\\y=-4\end{matrix}\right.\)
\(b,Sửa:\left|x-y-5\right|+\left(y+3\right)^2=0\\ \left\{{}\begin{matrix}\left|x-y-5\right|\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-y-5=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+5=2\\y=-3\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}\left|x+y-1\right|\ge0\\\left(y-2\right)^4\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-y=-1\\y=2\end{matrix}\right.\)
\(d,\left\{{}\begin{matrix}\left|x+3y-1\right|\ge0\\3\left|y+2\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+3y-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-3y=7\\y=-2\end{matrix}\right.\)
\(e,Sửa:\left|2021-x\right|+\left|2y-2022\right|=0\\ \left\{{}\begin{matrix}\left|2021-x\right|\ge0\\\left|2y-2022\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2021-x=0\\2y-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\y=1011\end{matrix}\right.\)