Các đường thẳng y = −5(x + 1); y = 3x + a; y = ax + 3 đồng quy với giá trị của a là
A. −13 hoặc 3
B. 13 hoặc −3
C. −12
D. −13
Hãy chỉ ra các cặp đường thẳng song song, các cặp đường thẳng cắt nhau trong các đường thẳng sau:
d1 ÷ 2x + y - 3 = 0
d2 ÷ y = 5-2x
d3 ÷2y = x+4
d4÷ x + y - 1 = 0
(d1): 2x + y - 3 = 0
y = -2x + 2
(d2): y = 5 - 2x
y = -2x + 5
(d3): 2y = x + 4
y = x/2 + 2
(d4): x + y - 1 = 0
y = -x + 1
*) Cặp đường thẳng song song:
(d1) và (d2)
*) Các cặp đường thẳng cắt nhau:
(d1) và (d3); (d1) và (d4); (d2) và (d3); (d2) và (d4); (d3) và (d4)
d1 y=3x-1 d2 y=-x d3 x+y+1=0 d4 y=x+4/5 d5 y=3x+7 d6 y=x/3-3
Trong các đường thẳng trên hãy chỉ ra các cặp đường thẳng
a) song song b)vuông góc
d1 y=3x-1 d2 y=-x d3 x+y+1=0 d4 y=x+4/5 d5 y=3x+7 d6 y=x/3-3
Trong các đường thẳng trên hãy chỉ ra các cặp đường thẳng
a) song song b)vuông góc
Cho hai đường thẳng có phương trình
y=(m+5)x-2m+3(m≠-5) (1)
y=(2m+1)x+3m(m≠ -1/2) (2)
Tìm các giá trị của m sao cho:
Hai đường thẳng cắt nhau
Hai đường thẳng song song với nhau
Hai đường thẳng trùng nhau
\(\left(1\right)\cap\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}m+5\ne2m+1\\-2m+3\ne3m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne4\\m\ne\dfrac{3}{5}\end{matrix}\right.\\ \left(1\right)//\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}m+5=2m+1\\-2m+3\ne3m\end{matrix}\right.\Leftrightarrow m=4\\ \left(1\right)\equiv\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}m+5=2m+1\\-2m+3=3m\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
a). Để hai hàm số cắt nhau thì:
a≠a'⇒ m+5=2m+1
⇔ m+5=2m+1
⇔ m-2m=1-5
⇔ -m = -4
⇔ m = 4.
Vậy hai hàm số cắt nhau khi m =4.
b). Để hai hàm số song song khi:
\(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}m+5=2m+1\\-2m+3=3m\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}m=-4\\m\ne\dfrac{3}{5}\end{matrix}\right.\)
Vậy hai hàm số đó song song khi m=-4; m≠\(\dfrac{3}{5}\).
c). Để hai hàm số trùng nhau khi:
\(\left\{{}\begin{matrix}a=a'\\b=b'\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}m+5=2m+1\\-2m+3=3m\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}m=-4\\m=\dfrac{3}{5}\end{matrix}\right.\)
Vậy hai hàm số đó trùng nhau khi m=-4; m=\(\dfrac{3}{5}\).
Xác định các giao điểm của các cặp đường thẳng sau:
a) y=-3-3x,y=-2x
b)y=-2-\(\sqrt{5}\)x,y=3(x-1)-5x
a: Phương trình hoành độ giao điểm là:
-3x-3=-2x
=>-3x+2x=3
=>-x=3
=>x=-3
Thay x=-3 vào y=-2x, ta được:
\(y=-2\cdot\left(-3\right)=2\cdot3=6\)
Vậy: Hai đường thẳng y=-3-3x và y=-2x cắt nhau tại điểm A(-3;6)
b: Phương trình hoành độ giao điểm là:
\(3\left(x-1\right)-5x=-\sqrt{5}\cdot x-2\)
=>\(-2x-3=-\sqrt{5}\cdot x=-2\)
=>\(-2x+x\cdot\sqrt{5}=-2+3=1\)
=>\(x\left(\sqrt{5}-2\right)=1\)
=>\(x=\dfrac{1}{\sqrt{5}-2}=\sqrt{5}+2\)
Thay \(x=\sqrt{5}+2\) vào y=3(x-1)-5x, ta được:
\(y=3x-3-5x=-2x-3=-2\cdot\left(\sqrt{5}+2\right)-3\)
\(=-2\sqrt{5}-4-3=-2\sqrt{5}-7\)
Vậy: Tọa độ giao điểm của hai đường thẳng \(y=-x\sqrt{5}-2;y=3\left(x-1\right)-5x\) là \(B\left(\sqrt{5}+2;-2\sqrt{5}-7\right)\)
Các đường thẳng y= -5( x+ 1) ; y= 3x+a và y=ax+3 đồng quy khi a= ?
A.-10
B.-8
C. -11
D.-13
+ Phương trình hoành độ giao điểm giữa hai đường thẳng y= -5( x+ 1) và y=3x+a :
-5x-5=3x+a suy ra -8x-a=5 (1)
+ Phương trình hoành độ giao điểm giữa hai đường thẳng y= 3x+a và y=ax+3là:
ax+3=3x+a hay (a-3) x=a-3
suy ra x=1( vì a≠3).
+Thế x= 1 vào (1) ta được: -8-a=5 nên a= -13.
Chọn D.
Bài 1: Vẽ các đồ thị hàm số sau trên cùng 1 hệ trục tọa độ \(y=-x+5\)(1); \(y=4x\)(2); \(y=\dfrac{-1}{4}x\)(3)
b, Gọi giao điểm của đường thẳng có phương trình (1) với các đường thẳng có phương trình (2) và (3) lần lượt tại A và B. Tìm tọa độ các điểm A và B
c, Tam giác OAB là tam giác gì? Vì sao?
d, Tính \(S_{AOB}\)
a:
b: tọa độ A là;
-x+5=4x và y=4x
=>x=1 và y=4
Tọa độ B là;
-x+5=-1/4x và y=-1/4x
=>-3/4x=-5 và y=-1/4x
=>x=5:3/4=5*4/3=20/3 và y=-1/4*20/3=-5/3
=>B(20/3;-5/3)
c: O(0;0); A(1;4); B(20/3;-5/3)
\(OA=\sqrt{1^2+4^2}=\sqrt{17}\)
\(OB=\sqrt{\left(\dfrac{20}{3}\right)^2+\left(-\dfrac{5}{3}\right)^2}=\dfrac{5\sqrt{17}}{3}\)
\(AB=\sqrt{\left(\dfrac{20}{3}-1\right)^2+\left(-\dfrac{5}{3}-4\right)^2}=\dfrac{\sqrt{818}}{3}\)
\(cosAOB=\dfrac{OA^2+OB^2-AB^2}{2\cdot OA\cdot OB}=\dfrac{-8}{17}\)
=>góc AOB tù
=>ΔOAB tù
Xác định các hệ số a, b sao cho đường thẳng y=ax+b song song với đường thẳng y=-x+5 và cắt parabol y=x2 tại điểm có hoành độ bằng 1
đường thẳng y = ax+ b song song với đường thằng y = -x+ 5
=> a = -1 ; b khác 5
=> đường thẳng có dạng y = -x + b
gọi A là giao của đg thẳng y = -x + b và parabol
=> xA = 1 => yA = xA2 = 1
A(1; 1) thuộc đg thẳng y = -x + b => yA = - xA + b =>b = 2 (thoả mãn)
Lập phương trình đường thẳng đi qua 2 điểm A(1,5)B(-2,-1).chứng tỏ đường AB và các đường thẳng y=x+5,y=3x+1 đồng quy tại một điểm
Cho các đường thẳng: (I) y = 3x - 1; (II) y = -3x - 1
(III) y = -3x + 2; (IV) y = 1/3 x - 1
Các cặp đường thẳng song song với nhau trong các đường thẳng trên là:
A.(I) và (III)
B.(II) và (III)
C.(I) và (IV)
D.(II) và (IV)