Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Bảo Ngọc
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 10 2021 lúc 17:40

Chứng minh bằng phép biến đổi tương đương:

1.

\(\Leftrightarrow4+x+y\ge4\sqrt{x+y}\)

\(\Leftrightarrow x+y-4\sqrt{x+y}+4\ge0\)

\(\Leftrightarrow\left(\sqrt{x+y}-2\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

2.

\(\Leftrightarrow\dfrac{y+z}{xyz}\ge\dfrac{4}{x^2+yz}\)

\(\Leftrightarrow\left(y+z\right)\left(x^2+yz\right)\ge4xyz\)

\(\Leftrightarrow x^2y+x^2z+y^2z+z^2y-4xyz\ge0\)

\(\Leftrightarrow y\left(x^2+z^2-2xz\right)+z\left(x^2+y^2-2xy\right)\ge0\)

\(\Leftrightarrow y\left(x-z\right)^2+z\left(x-y\right)^2\ge0\) (đúng)

Tiểu Bạch Kiểm
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2021 lúc 22:05

\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}=\dfrac{x^2+y^2+2}{\left(xy\right)^2+x^2+y^2+1}=1-\dfrac{\left(xy\right)^2-1}{\left(xy\right)^2+x^2+y^2+1}\ge1-\dfrac{\left(xy\right)^2-1}{\left(xy\right)^2+2xy+1}\)

\(\Rightarrow\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge1-\dfrac{\left(xy+1\right)\left(xy-1\right)}{\left(xy+1\right)^2}=1-\dfrac{xy-1}{xy+1}=\dfrac{2}{1+xy}\) (đpcm)

b. Tương tự câu a:

\(\dfrac{1}{1+x^2}+\dfrac{1}{1+z^2}\ge\dfrac{2}{1+zx}\) ; \(\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\ge\dfrac{2}{1+yz}\)

Cộng vế với vế và rút gọn:

\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\ge\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{z+zx}\) (1)

Mà \(\left\{{}\begin{matrix}z\ge1\Rightarrow1+xy\le1+xyz\\y\ge1\Rightarrow1+zx\le1+xyz\\x\ge1\Rightarrow1+yz\le1+xyz\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}\ge\dfrac{1}{1+xyz}+\dfrac{1}{1+xyz}+\dfrac{1}{1+xyz}=\dfrac{3}{1+xyz}\) (2)

TỪ (1); (2) \(\Rightarrowđpcm\)

肖战Daytoy_1005
1 tháng 3 2021 lúc 22:13

a) Ta có: \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)

\(\Leftrightarrow\dfrac{1}{1+x^2}-\dfrac{1}{1+xy}+\dfrac{1}{1+y^2}-\dfrac{1}{1+xy}\ge0\)

\(\Leftrightarrow\dfrac{\left(1+xy\right)-\left(1+x^2\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{\left(1+xy\right)-\left(1+y^2\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(xy-x^2\right)\left(1+y^2\right)+\left(xy-y^2\right)\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\dfrac{xy+xy^3-x^2-x^2y^2+xy+x^3y-y^2-x^2y^2}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{2xy+xy\left(x^2+y^2\right)-2x^2y^2-x^2-y^2}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{xy\left(x^2-2xy+y^2\right)-\left(x^2-2xy+y^2\right)}{\left(1+xy\right)\left(1+y^2\right)\left(1+x^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{xy\left(x-y\right)^2-\left(x-y\right)^2}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(xy-1\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)(luôn đúng)

=> Đẳng thức ban đầu được chứng minh.

P/s: Cái đoạn sau bạn bổ sung thêm vào là vì x và y lớn hơn bằng 1 nên xy-1 sẽ lớn hơn hoặc bằng 0 nhé, mình lười quá ngại chèn:vv.

Còn câu b bạn đợi mình nháp xíu.

Minh Hiếu
Xem chi tiết
Nguyễn Hoàng Minh
6 tháng 5 2022 lúc 22:00

Xét \(\dfrac{a}{a^2+1}+\dfrac{3\left(a-2\right)}{25}-\dfrac{2}{5}=\dfrac{a}{a^2+1}+\dfrac{3a-16}{25}=\dfrac{\left(3a-4\right)\left(a-2\right)^2}{25\left(a^2+1\right)}\ge0\)

\(\Rightarrow\dfrac{a}{a^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(a-2\right)}{25}\)

CMTT \(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{b^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(b-2\right)}{25}\\\dfrac{c}{c^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(c-2\right)}{25}\end{matrix}\right.\)

Cộng vế theo vế:

\(\Rightarrow VT\ge\dfrac{2}{5}+\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3\left(a-2\right)+3\left(b-2\right)+3\left(c-2\right)}{25}\ge\dfrac{6}{5}-\dfrac{3\left(a+b+c-6\right)}{25}=\dfrac{6}{5}\)

Dấu \("="\Leftrightarrow a=b=c=2\)

Ngọc Trang
Xem chi tiết
Mai Diễm My
Xem chi tiết
kuroba kaito
15 tháng 4 2018 lúc 12:42

\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)

\(\left(\dfrac{1}{1+x^2}-\dfrac{1}{1+xy}\right)+\left(\dfrac{1}{1+y^2}-\dfrac{1}{1+xy}\right)\ge0\)

\(\left(\dfrac{1+xy-\left(1+x^2\right)}{\left(1+x^2\right)\left(1+xy\right)}\right)+\left(\dfrac{1+xy-\left(1+y^2\right)}{\left(1+y^2\right)\left(1+xy\right)}\right)\ge0\)

\(\left(\dfrac{1+xy-1-x^2}{\left(1+x^2\right)\left(1+xy\right)}\right)+\left(\dfrac{1+xy-1-y^2}{\left(1+y^2\right)\left(1+xy\right)}\right)\ge0\)

\(\dfrac{-x\left(x-y\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{-y\left(y-x\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\dfrac{-x\left(x-y\right)\left(1+y^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}+\dfrac{y\left(x-y\right)\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

=> -x(x-y)(1+y2)+y(x-y)(1+x2) ≥ 0

⇔ (x-y)[-x(1+y2)+y(1+x2)]≥0

⇔ (x-y)(-x-xy2+y+x2y) ≥0

⇔ (x-y)[-(x-y)+(x2y-y2x)] ≥ 0

⇔ (x-y)[-(x-y)+xy(x-y) ]≥ 0

⇔ (x-y)(x-y)(xy-1)≥ 0

⇔ (x-y)2 (xy-1) ≥0 (luôn đúng ∀ xy ≥ 1)

=> đpcm

Đạt Đỗ
Xem chi tiết
missing you =
17 tháng 7 2021 lúc 15:19

 đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)

\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)

BBDT AM-GM 

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)

vì \(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(x^2+z^2\ge2xz\)

\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)

\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)

dấu"=" xảy ra<=>x=y=z=1/3

Phương Anh Đỗ
Xem chi tiết
Mai Thành Đạt
5 tháng 4 2018 lúc 19:47

\(\dfrac{\sqrt{1\left(x-1\right)}}{x}\le\dfrac{1+x-1}{2x}=\dfrac{1}{2}\) ( cauchy )

TT,\(\dfrac{\sqrt{y-2}}{y}\le\dfrac{1}{2\sqrt{2}};\dfrac{\sqrt{z-3}}{z}\le\dfrac{1}{2\sqrt{3}}\)

cộng vế theo vế => đpcm

do thai
10 tháng 4 2018 lúc 18:41

kho ghe

Duong Thi Nhuong
Xem chi tiết
Lightning Farron
14 tháng 6 2017 lúc 8:11

\(M=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)

\(=\dfrac{yz\sqrt{x-1}}{xyz}+\dfrac{xz\sqrt{y-2}}{xyz}+\dfrac{xy\sqrt{z-3}}{xyz}\)

\(=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\)\(\Rightarrow\dfrac{\sqrt{x-1}}{x}\le\dfrac{x}{2}\cdot\dfrac{1}{x}=\dfrac{1}{2}\)

\(\sqrt{y-2}=\dfrac{\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{y}{2\sqrt{2}}\)\(\Rightarrow\dfrac{\sqrt{y-2}}{y}\le\dfrac{y}{2\sqrt{2}}\cdot\dfrac{1}{y}=\dfrac{1}{2\sqrt{2}}\)

\(\sqrt{z-3}=\dfrac{\sqrt{3\left(z-3\right)}}{\sqrt{3}}\le\dfrac{z}{2\sqrt{3}}\)\(\Rightarrow\dfrac{\sqrt{z-3}}{z}\le\dfrac{z}{2\sqrt{3}}\cdot\dfrac{1}{z}=\dfrac{1}{2\sqrt{3}}\)

Cộng theo vế 3 BĐT trên ta có:

\(M\le\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\) (ĐPCM)

Luyri Vũ
Xem chi tiết
Nguyễn Hải An
Xem chi tiết
Aki Tsuki
28 tháng 5 2018 lúc 23:52

a/ Cho x, y ≥ 1. Chứng minh: 1/(1 + x^2) + 1/(1 + y^2) ≥ 2/(1 + xy)

b/ Đề:...Tìm GTLN

Có:

\(\dfrac{1}{4x^2-4x+2}=\dfrac{1}{\left(2x-1\right)^2+1}\le\dfrac{1}{2}\forall x\ge1\)

\(\dfrac{1}{9y^2+6y+2}=\dfrac{1}{\left(3y+1\right)^2+1}\le\dfrac{1}{2}\forall y\ge0\)

\(\Rightarrow A=\dfrac{1}{4x^2-4x+2}+\dfrac{1}{9y^2+6y+2}\le\dfrac{1}{2}+\dfrac{1}{2}=1\)

Vậy MAXA = 1 khi \(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)