Cho x \(\ge\) \(\dfrac{1}{2}\) ; y \(\ge\) \(\dfrac{3}{4}\) . Tìm giá trị nhỏ nhất của biểu thức :
A = x + 2y - \(\sqrt{\left(2x-1\right)}\) - 5 \(\sqrt{\left(4y-1\right)}\) + 16
(GIÚP MK VỚI NHA !❤❤❤)
cho x,y,z ≥ 0, chứng minh
1)\(\dfrac{1}{\sqrt{x+y}}\ge\dfrac{4}{4+x+y}\)
2)\(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{4}{x^2+yz}\)
Chứng minh bằng phép biến đổi tương đương:
1.
\(\Leftrightarrow4+x+y\ge4\sqrt{x+y}\)
\(\Leftrightarrow x+y-4\sqrt{x+y}+4\ge0\)
\(\Leftrightarrow\left(\sqrt{x+y}-2\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
2.
\(\Leftrightarrow\dfrac{y+z}{xyz}\ge\dfrac{4}{x^2+yz}\)
\(\Leftrightarrow\left(y+z\right)\left(x^2+yz\right)\ge4xyz\)
\(\Leftrightarrow x^2y+x^2z+y^2z+z^2y-4xyz\ge0\)
\(\Leftrightarrow y\left(x^2+z^2-2xz\right)+z\left(x^2+y^2-2xy\right)\ge0\)
\(\Leftrightarrow y\left(x-z\right)^2+z\left(x-y\right)^2\ge0\) (đúng)
Cho x ≥ 1; y ≥ 1, z ≥ 1. Chứng minh rằng
a) \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
b) \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\ge\dfrac{3}{1+xyz}\)
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}=\dfrac{x^2+y^2+2}{\left(xy\right)^2+x^2+y^2+1}=1-\dfrac{\left(xy\right)^2-1}{\left(xy\right)^2+x^2+y^2+1}\ge1-\dfrac{\left(xy\right)^2-1}{\left(xy\right)^2+2xy+1}\)
\(\Rightarrow\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge1-\dfrac{\left(xy+1\right)\left(xy-1\right)}{\left(xy+1\right)^2}=1-\dfrac{xy-1}{xy+1}=\dfrac{2}{1+xy}\) (đpcm)
b. Tương tự câu a:
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+z^2}\ge\dfrac{2}{1+zx}\) ; \(\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\ge\dfrac{2}{1+yz}\)
Cộng vế với vế và rút gọn:
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\ge\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{z+zx}\) (1)
Mà \(\left\{{}\begin{matrix}z\ge1\Rightarrow1+xy\le1+xyz\\y\ge1\Rightarrow1+zx\le1+xyz\\x\ge1\Rightarrow1+yz\le1+xyz\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}\ge\dfrac{1}{1+xyz}+\dfrac{1}{1+xyz}+\dfrac{1}{1+xyz}=\dfrac{3}{1+xyz}\) (2)
TỪ (1); (2) \(\Rightarrowđpcm\)
a) Ta có: \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
\(\Leftrightarrow\dfrac{1}{1+x^2}-\dfrac{1}{1+xy}+\dfrac{1}{1+y^2}-\dfrac{1}{1+xy}\ge0\)
\(\Leftrightarrow\dfrac{\left(1+xy\right)-\left(1+x^2\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{\left(1+xy\right)-\left(1+y^2\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(xy-x^2\right)\left(1+y^2\right)+\left(xy-y^2\right)\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\dfrac{xy+xy^3-x^2-x^2y^2+xy+x^3y-y^2-x^2y^2}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)
\(\Leftrightarrow\dfrac{2xy+xy\left(x^2+y^2\right)-2x^2y^2-x^2-y^2}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)
\(\Leftrightarrow\dfrac{xy\left(x^2-2xy+y^2\right)-\left(x^2-2xy+y^2\right)}{\left(1+xy\right)\left(1+y^2\right)\left(1+x^2\right)}\ge0\)
\(\Leftrightarrow\dfrac{xy\left(x-y\right)^2-\left(x-y\right)^2}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(xy-1\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)(luôn đúng)
=> Đẳng thức ban đầu được chứng minh.
P/s: Cái đoạn sau bạn bổ sung thêm vào là vì x và y lớn hơn bằng 1 nên xy-1 sẽ lớn hơn hoặc bằng 0 nhé, mình lười quá ngại chèn:vv.
Còn câu b bạn đợi mình nháp xíu.
1. Cho a,b,c t/m: \(\left\{{}\begin{matrix}a\ge\dfrac{4}{3}\\b\ge\dfrac{4}{3}\\c\ge\dfrac{4}{3}\end{matrix}\right.\) và \(a+b+c=6\)
\(CMR:\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}+\dfrac{c}{c^2+1}\ge\dfrac{6}{5}\)
2. Cho x,y >0 t/m: \(2x+3y-13\ge0\)
Tìm min \(P=x^2+3x+\dfrac{4}{x}+y^2+\dfrac{9}{y}\)
Xét \(\dfrac{a}{a^2+1}+\dfrac{3\left(a-2\right)}{25}-\dfrac{2}{5}=\dfrac{a}{a^2+1}+\dfrac{3a-16}{25}=\dfrac{\left(3a-4\right)\left(a-2\right)^2}{25\left(a^2+1\right)}\ge0\)
\(\Rightarrow\dfrac{a}{a^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(a-2\right)}{25}\)
CMTT \(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{b^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(b-2\right)}{25}\\\dfrac{c}{c^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(c-2\right)}{25}\end{matrix}\right.\)
Cộng vế theo vế:
\(\Rightarrow VT\ge\dfrac{2}{5}+\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3\left(a-2\right)+3\left(b-2\right)+3\left(c-2\right)}{25}\ge\dfrac{6}{5}-\dfrac{3\left(a+b+c-6\right)}{25}=\dfrac{6}{5}\)
Dấu \("="\Leftrightarrow a=b=c=2\)
cho x,y ≥ 0 và x+y ≥ 0
CMR: \(\dfrac{1}{1+4^x}\) +\(\dfrac{1}{1+4^y}\)≥ \(\dfrac{2}{1+2^{x+y}}\)
cho x,y thỏa mãn xy≥1 chứng minh rằng
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
⇔ \(\left(\dfrac{1}{1+x^2}-\dfrac{1}{1+xy}\right)+\left(\dfrac{1}{1+y^2}-\dfrac{1}{1+xy}\right)\ge0\)
⇔ \(\left(\dfrac{1+xy-\left(1+x^2\right)}{\left(1+x^2\right)\left(1+xy\right)}\right)+\left(\dfrac{1+xy-\left(1+y^2\right)}{\left(1+y^2\right)\left(1+xy\right)}\right)\ge0\)
⇔ \(\left(\dfrac{1+xy-1-x^2}{\left(1+x^2\right)\left(1+xy\right)}\right)+\left(\dfrac{1+xy-1-y^2}{\left(1+y^2\right)\left(1+xy\right)}\right)\ge0\)
⇔ \(\dfrac{-x\left(x-y\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{-y\left(y-x\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
⇔ \(\dfrac{-x\left(x-y\right)\left(1+y^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}+\dfrac{y\left(x-y\right)\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)
=> -x(x-y)(1+y2)+y(x-y)(1+x2) ≥ 0
⇔ (x-y)[-x(1+y2)+y(1+x2)]≥0
⇔ (x-y)(-x-xy2+y+x2y) ≥0
⇔ (x-y)[-(x-y)+(x2y-y2x)] ≥ 0
⇔ (x-y)[-(x-y)+xy(x-y) ]≥ 0
⇔ (x-y)(x-y)(xy-1)≥ 0
⇔ (x-y)2 (xy-1) ≥0 (luôn đúng ∀ xy ≥ 1)
=> đpcm
cho x,y,z là các số thực dương thỏa mãn \(x^2+y^2+z^2\ge\dfrac{1}{3}\)
chứng minh \(\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\ge\dfrac{1}{30}\)
đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)
\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)
BBDT AM-GM
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)
theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)
vì \(x^2+y^2\ge2xy\)
\(y^2+z^2\ge2yz\)
\(x^2+z^2\ge2xz\)
\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)
\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)
dấu"=" xảy ra<=>x=y=z=1/3
Cho x\(\ge\)1, y \(\ge\)2, z\(\ge\)3
Cm \(\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)
\(\dfrac{\sqrt{1\left(x-1\right)}}{x}\le\dfrac{1+x-1}{2x}=\dfrac{1}{2}\) ( cauchy )
TT,\(\dfrac{\sqrt{y-2}}{y}\le\dfrac{1}{2\sqrt{2}};\dfrac{\sqrt{z-3}}{z}\le\dfrac{1}{2\sqrt{3}}\)
cộng vế theo vế => đpcm
Cho x ≥ 1; y ≥ 2; z ≥ 3 và \(M=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
Chứng minh M ≤ \(\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\)
\(M=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
\(=\dfrac{yz\sqrt{x-1}}{xyz}+\dfrac{xz\sqrt{y-2}}{xyz}+\dfrac{xy\sqrt{z-3}}{xyz}\)
\(=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\)\(\Rightarrow\dfrac{\sqrt{x-1}}{x}\le\dfrac{x}{2}\cdot\dfrac{1}{x}=\dfrac{1}{2}\)
\(\sqrt{y-2}=\dfrac{\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{y}{2\sqrt{2}}\)\(\Rightarrow\dfrac{\sqrt{y-2}}{y}\le\dfrac{y}{2\sqrt{2}}\cdot\dfrac{1}{y}=\dfrac{1}{2\sqrt{2}}\)
\(\sqrt{z-3}=\dfrac{\sqrt{3\left(z-3\right)}}{\sqrt{3}}\le\dfrac{z}{2\sqrt{3}}\)\(\Rightarrow\dfrac{\sqrt{z-3}}{z}\le\dfrac{z}{2\sqrt{3}}\cdot\dfrac{1}{z}=\dfrac{1}{2\sqrt{3}}\)
Cộng theo vế 3 BĐT trên ta có:
\(M\le\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\) (ĐPCM)
Cho \(x\ge y\ge z>0\)
CMR : \(\dfrac{x^2y}{z}+\dfrac{y^2z}{x}+\dfrac{z^2x}{y}\ge x^2+y^2+z^2\)
a, Cho x , y \(\ge\)1 . CMR : \(\dfrac{1}{1+x^2}\) + \(\dfrac{1}{1+y^2}\)\(\ge\)\(\dfrac{2}{1+xy}\)
b, Cho x \(\ge\)1 , y\(\ge\)0 và 6xy +2x - 3y \(\le\) 2 . Tìm GTNN
A = \(\dfrac{1}{4x^2-4x+2}\)+ \(\dfrac{1}{9y^2+6y+2}\)
a/ Cho x, y ≥ 1. Chứng minh: 1/(1 + x^2) + 1/(1 + y^2) ≥ 2/(1 + xy)
b/ Đề:...Tìm GTLN
Có:
\(\dfrac{1}{4x^2-4x+2}=\dfrac{1}{\left(2x-1\right)^2+1}\le\dfrac{1}{2}\forall x\ge1\)
\(\dfrac{1}{9y^2+6y+2}=\dfrac{1}{\left(3y+1\right)^2+1}\le\dfrac{1}{2}\forall y\ge0\)
\(\Rightarrow A=\dfrac{1}{4x^2-4x+2}+\dfrac{1}{9y^2+6y+2}\le\dfrac{1}{2}+\dfrac{1}{2}=1\)
Vậy MAXA = 1 khi \(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)