Cho phương trình x2 - 2mx + m2 + 3m - 4 = 0 (m là tham số) (1)
a) Tìm m để phương trình (1) có nghiệm.
b) Tìm m để phương trình (1) có 2 nghiệm x1 ; x2 thỏa mãn: A = x12 + x22 đạt giá trị nhỏ nhất.
Cho phương trình: x2 - 2(m + 1) + m2 - 4m + 3 = 0 (với m là tham số)
a) Tìm m để phương trình đã cho có nghiệm.
b) Tìm m để phương trình đã cho có hai nghiệm cùng dấu.
c) Tìm m để phương trình đã cho có hai nghiệm khác dấu.
d) Tìm m để phương trình đã cho có hai nghiệm dương.
e) Tìm m để phương trình đã cho có hai nghiệm âm.
Cho phương trình : x2 – 2mx + m2 – m + 1 = 0 (1) (m là tham số)
a) Giải phương trình (1) với m = 2;
b) Tìm m để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn: \(x^2_1+2mx_2=9\) .
a: Khi m=2 thì pt (1) trở thành:
\(x^2-4x+3=0\)
=>(x-1)(x-3)=0
=>x=1 hoặc x=3
\(a\)) Thay \(:m=2\)
\(Pt\rightarrow x^2-4x+3=0\\ \rightarrow\left(x-1\right)\left(x-3\right)=0\\ \rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
b) Để phương trình có nghiệm
\(\rightarrow m^2-m^2+m-1\ge0\\ \rightarrow\ge1\)
\(Vi-et:\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{matrix}\right.\)
\(x_1\)\(^2\)\(+2mx9=9\)
\(\rightarrow x_1\)\(^2+\left(x_1+x_2\right)x_2=9\)
\(\rightarrow x_1\)\(^2+x_1x_2+x_2\)\(^2=9\)
\(\rightarrow x_1\)\(^2+2x_1x_2+x_2\)\(^2-x_1x_2=9\)
\(\rightarrow\left(x_1+x_2\right)^2-x_1x_2=9\)
\(\rightarrow4m^2-m^2+m-1=9\\ \rightarrow3m^2+m-1=9\\ \rightarrow\left[{}\begin{matrix}m=\dfrac{5}{3}\\m=-2\left(l\right)\end{matrix}\right.\)
Cho phương trình x2+3x+m+1 = 0 (m là tham số).
a) Tìm m để phương trình có hai nghiệm.
b) Gọi x1, x2 là hai nghiệm của phương trình. Tìm giá trị lớn nhất của biểu thức P = ( x1 - x2 )2 + 7m + 5x1x2.
a) Phương trình có hai nghiệm phân biệt khi:
\(\Delta=9-4\left(m+1\right)>0\) \(\Leftrightarrow m< \dfrac{5}{4}\)
Vậy \(\ m< \dfrac{5}{4}\) thì pt có hai nghiệm phân biệt.
b) Áp dụng hệ thức viet có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m+1\end{matrix}\right.\)
\(P=\left(x_1+x_2\right)^2-4x_1.x_2+7m+5.x_1x_2\)
\(=9-4\left(m+1\right)+7m+5\left(m+1\right)\)
\(=8m+10\)
Không tồn tại giá trị lớn nhất. Em xem lại đề
Cho phương trình : 2 x 2 − 2 m x + m 2 − 2 = 0 1 , với m là tham số.
a) Giải phương trình (1) khi m= 2.
b) Tìm các giá trị của m để phương trình (1) có hai nghiệm x 1 , x 2 sao cho biểu thức A = 2 x 1 x 2 − x 1 − x 2 − 4 đạt giá trị lớn nhất.
a, Với m= 2, ta có 2 x 2 − 4 x + 2 = 0 ⇔ x = 1
b) Phương trình (1) có hai nghiệm x 1 , x 2 khi và chỉ khi Δ ' ≥ 0 ⇔ − 2 ≤ m ≤ 2
Theo Vi-et , ta có: x 1 + x 2 = m 1 x 1 . x 2 = m 2 − 2 2 2
Theo đề bài ta có: A = 2 x 1 x 2 − x 1 − x 2 − 4 = m 2 − 2 − m − 4 = m − 3 m + 2
Do − 2 ≤ m ≤ 2 nên m + 2 ≥ 0 , m − 3 ≤ 0 . Suy ra A = m + 2 − m + 3 = − m 2 + m + 6 = − m − 1 2 2 + 25 4 ≤ 25 4
Vậy MaxA = 25 4 khi m = 1 2 .
Cho phương trình: x2 - 2(m - 1)x + m2 - 3m = 0 (1) với m là tham số.
a) Giải phương trình (1) khi m = 0.
b) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn điều kiện: |x1| - 4 ≥ - |x2|
a) Thay m=0 vào phương trình (1), ta được:
\(x^2-2\cdot\left(0-1\right)x+0^2-3m=0\)
\(\Leftrightarrow x^2+2x=0\)
\(\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy: Khi m=0 thì S={0;-2}
Cho phương trình \(mx^2+\left(m-1\right)x+m-1=0\)
a) Tìm m để phương trình vô nghiệm.
b) Tìm m để phương trình có hai nghiệm trái dấu.
c) Tìm m để phương trình có hai nghiệm x1; x2 sao cho \(x_1^2+x_2^2-3>0\)
a. Với \(m=0\Rightarrow-x-1=0\Rightarrow x=-1\) pt có nghiệm (ktm)
Với \(m\ne0\) pt vô nghiệm khi:
\(\Delta=\left(m-1\right)^2-4m\left(m-1\right)< 0\)
\(\Leftrightarrow\left(m-1\right)\left(-3m-1\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
b. Phương trình có 2 nghiệm trái dấu khi \(ac< 0\)
\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)
c. Từ câu a ta suy ra pt có 2 nghiệm khi \(\left\{{}\begin{matrix}m\ne0\\-\dfrac{1}{3}\le m\le1\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-m}{m}\\x_1x_2=\dfrac{m-1}{m}\end{matrix}\right.\)
\(x_1^2+x_2^2-3>0\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3>0\)
\(\Leftrightarrow\left(\dfrac{1-m}{m}\right)^2-2\left(\dfrac{m-1}{m}\right)-3>0\)
Đặt \(\dfrac{m-1}{m}=t\Rightarrow t^2-2t-3>0\Rightarrow\left[{}\begin{matrix}t>3\\t< -1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{m-1}{m}>3\\\dfrac{m-1}{m}< -1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{-2m-1}{m}>0\\\dfrac{2m-1}{m}< 0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)
Kết hợp điều kiện có nghiệm \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}\le m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)
Cho phương trình:x2-2(m-1)x+m2-2m=0 (m là tham số)
a,Giải phương trình với m=3
b,Tìm m để phương trình có 1 nghiệm x=-2.Với m tìm được hãy tìm nghiệm còn lại của phương trình
c,Tìm m để phương trình có 2 nghiệm x1 và x2 thỏa mãn:x12+x22=4
a: Thay m=3 vào pt, ta được:
\(x^2-2\cdot\left(3-1\right)x+3^2-2\cdot3=0\)
\(\Leftrightarrow x^2-4x+3=0\)
=>(x-1)(x-3)=0
=>x=1 hoặc x=3
b: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m^2-2m\right)\)
\(=\left(2m-2\right)^2-4\left(m^2-2m\right)\)
\(=4m^2-8m+4-4m^2+8m=4>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Thay x=-2 vào pt, ta được:
\(\left(-2\right)^2-2\cdot\left(-2\right)\cdot\left(m-1\right)+m^2-2m=0\)
\(\Leftrightarrow m^2-2m+4+4\left(m-1\right)=0\)
\(\Leftrightarrow m^2-2m+4+4m-4=0\)
=>m(m+2)=0
=>m=0 hoặc m=-2
Theo hệ thức Vi-et, ta được:
\(x_1+x_2=2\left(m-1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x_2-2=2\cdot\left(-1\right)=-2\\x_2-2=2\cdot\left(-3\right)=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_2=0\\x_2=-4\end{matrix}\right.\)
c: \(x_1^2+x_2^2=4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-2m\right)=4\)
\(\Leftrightarrow4m^2-8m+4-2m^2+4m-4=0\)
\(\Leftrightarrow2m^2-4m=0\)
=>2m(m-2)=0
=>m=0 hoặc m=2
Câu 1: Cho phương trình: : x2 – 2mx - 10 = 0
a) Giải phương trình khi m = 1
b) Tìm giá trị của tham số m để phương trình x2 – 2mx + 10 = 0 có hai nghiệm phân
biệt \(x1\), \(x2\) thỏa mãn \(x1^2\) + \(x2^2\) = 29
a) Khi \(m=1\) thì pt đã cho trở thành \(x^2-2x-10=0\) (*)
pt (*) có \(\Delta'=\left(-1\right)^2-\left(-10\right)=11>0\)
Do đó (*) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-\left(-1\right)+\sqrt{11}}{1}=1+\sqrt{11}\\x_2=\dfrac{-\left(-1\right)-\sqrt{11}}{1}=1-\sqrt{11}\end{matrix}\right.\)
b) Xét pt đã cho \(x^2-mx-10=0\) \(\left(a=1;b=-m;c=-10\right)\)
Nhận thấy \(ac=1\left(-10\right)=-10< 0\) nên pt đã cho luôn có 2 nghiệm phân biệt \(x_1,x_2\).
Áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-m}{1}=m\\x_1x_2=\dfrac{-10}{1}=-10\end{matrix}\right.\)
Ta có \(x_1^2+x_2^2=29\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=29\Leftrightarrow m^2-2\left(-10\right)=29\)\(\Leftrightarrow m^2+20=29\Leftrightarrow m^2=9\Leftrightarrow m=\pm3\)
Vậy để pt đã cho có 2 nghiệm phân biệt thỏa mãn đề bài thì \(m=\pm3\)
Cho phương trình bậc hai: x2 – 2mx + 2m – 5 = 0 ( m: tham số ) (1)
a/ Chứng tỏ rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m.
b/ Gọi x1, x2 là nghiệm của phương trình (1). Tìm m để ( x1 – x2 )2 = 32
a: \(\text{Δ }=\left(-2m\right)^2-4\left(2m-5\right)=4m^2-8m+20\)
\(=4m^2-8m+4+16=\left(2m-2\right)^2+16>0\)
=>(1) luôn có hai nghiệm phân biệt
b: (x1-x2)^2=32
=>(x1+x2)^2-4x1x2=32
=>\(\left(2m\right)^2-4\left(2m-5\right)=32\)
=>4m^2-8m+20-32=0
=>4m^2-8m-12=0
=>m^2-2m-3=0
=>m=3 hoặc m=-1
Bài 5. Cho phương trình: x2 – 2mx + m2 – m = 0, m là tham số. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 sao cho:
a) x1 = 3x2
b) 2x1 + 3x2 = 6