a: Khi m=2 thì pt (1) trở thành:
\(x^2-4x+3=0\)
=>(x-1)(x-3)=0
=>x=1 hoặc x=3
\(a\)) Thay \(:m=2\)
\(Pt\rightarrow x^2-4x+3=0\\ \rightarrow\left(x-1\right)\left(x-3\right)=0\\ \rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
b) Để phương trình có nghiệm
\(\rightarrow m^2-m^2+m-1\ge0\\ \rightarrow\ge1\)
\(Vi-et:\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{matrix}\right.\)
\(x_1\)\(^2\)\(+2mx9=9\)
\(\rightarrow x_1\)\(^2+\left(x_1+x_2\right)x_2=9\)
\(\rightarrow x_1\)\(^2+x_1x_2+x_2\)\(^2=9\)
\(\rightarrow x_1\)\(^2+2x_1x_2+x_2\)\(^2-x_1x_2=9\)
\(\rightarrow\left(x_1+x_2\right)^2-x_1x_2=9\)
\(\rightarrow4m^2-m^2+m-1=9\\ \rightarrow3m^2+m-1=9\\ \rightarrow\left[{}\begin{matrix}m=\dfrac{5}{3}\\m=-2\left(l\right)\end{matrix}\right.\)