Cho đa thức f(x) = x2 – 4x – 5. Chứng tỏ rằng x = -1; x = 5 là hai nghiệm của đa thức đó.
Cho đa thức f(x) = x2 – 4x – 5. Chứng tỏ rằng x = -1; x = 5 là hai nghiệm của đa thức đó.
Thay x = -1; x = 5 vào đa thức f(x) = x2 – 4x – 5, ta có:
f(-1) = (-1)2 – 4.(-1) – 5 = 1 + 4 – 5 = 0
f(5) = 52 – 4.5 – 5 = 25 – 20 – 5 = 0
Vậy x = -1 và x = 5 là các nghiệm của đa thức f(x) = x2 – 4x – 5
Thay x = -1; x = 5 vào đa thức f(x) = x2 – 4x – 5, ta có:
f(-1) = (-1)2 – 4.(-1) – 5 = 1 + 4 – 5 = 0
f(5) = 52 – 4.5 – 5 = 25 – 20 – 5 = 0
Vậy x = -1 và x = 5 là các nghiệm của đa thức f(x) = x2 – 4x – 5
cho đa thức f(x) = x^2 - 4x - 5 Chứng tỏ rằng x= -1 ; x = 5 là hai nghiệm của đa thức đó
f(-1)=1+4-5=0
f(5)=25-20-5=0
Do đó: x=-1; x=5 là các nghiệm của f(x)
Ta có \(f\left(-1\right)=1+4-5=0\)
Vậy x = -1 là nghiệm đa thức trên
\(f\left(5\right)=25-20-5=0\)
Vậy x = 5 là nghiệm đa thức trên
Cho đa thức \(f\left(x\right)=x^2-4x-5\) Chứng tỏ rằng \(x=-1;x=5\) là hai nghiệm của đa thức đó.
Đặt \(f\left(x\right)=0\)
\(\Leftrightarrow x^2-4x-5=0\)
\(\Leftrightarrow x^2+x-5x-5=0\)
\(\Leftrightarrow x\left(x+1\right)-5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-5\right)=0\)
\(\rightarrow\left[{}\begin{matrix}x+1=0\\x-5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)
--> hai nghiệm \(x=-1;x=5\) là hai nghiệm của đa thức \(f\left(x\right)\)
đặt f(x) = 0
\(\Leftrightarrow x^2-4x-5=0\\ \Leftrightarrow x^2+x-5x-5=0\\ \Leftrightarrow x\left(x+1\right)-5\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
Vậy x = 5 và x = -1 là 2 nghiệm của f(x)
Thay x = -1 vào đa thức f(x) có
f(x) = x2 - 4x - 5
f(-1) = (-1)2 -4.(-1) - 5
f(-1) = 0
Vậy x = -1 và nghiệm của đa thức f(x)
Thay x = 5 vào đa thức f(x) có
f(x) = x2 - 4x - 5
f(5) = =52 -4.5 - 5
f(5) = 0
Vậy x = 5 và nghiệm của đa thức f(x)
b) Cho đa thức f(x) = x2 - 5x - 35. Chứng tỏ x = -5 là nghiệm của đa thức f(x) và
x = 5 không là nghiệm của đa thức f(x).
Cái nào cũng không phải là nghiệm hết ạ;-;
chứng tỏ rằng đa thức sau không có nghiệm: A(x) = x2 - 4x 7
Tìm nghiệm của đa thức sau: P (x) = x4 x3 x 1
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
Bài 1 : Cho đa thức F(x) = \(4x^3+3x^4-1-x^2+4x^2-x^3-2x^4+3-3x^3\)
Chứng tỏ rằng ; đa thức F(x) không có nghiệm trong R
Đây là suy nghĩ của mk thôi, mình cx ko chắc lắm đâu:
Ta có:
F(x)=4x3 + 3x4 \(-\)1 - x2+4x2 -x3-2x4 +3-3x3
=(3x4-2x4) +(4x3-x3-3x3)+(-x2+4x2)+( -1+3)
= x4 + 3x2 +2
Lại có:
x4\(\ge\)0
=> -x4\(\ge\)0
3x2\(\ge\)0
=> 3(-x)2\(\ge\)0
2>0
=> x4+3x2+2>0
Vậy đa thức F(x) luôn nhận giá trị lớn hơn 0 vs mọi x hay đa thức F(x) không có nghiệm trong R
F (x) = 4x3 + 3x4 - 1 - x2 + 4x2 - x3 - 2x4 + 3 - 3x3
F (x) = (3x4 - 2x4) + (4x3 - x3 - 3x3) + (-x2 + 4x2) + (-1+3)
F (x) = x4 + 3x2 + 2
Ta có: x4 \(\ge\) 0 với mọi x
Ta có: 3x2 \(\ge\) 0 với mọi x
=> x4 + 3x2 \(\ge\) 0 với mọi x
Mà x4 + 3x2 + 2 > 0
Vậy F (x) vô nghiệm
chứng tỏ rằng đa thức sau không có nghiệm: A(x) = x2 - 4x 7Tìm nghiệm của đa thức sau: P (x) = x4 x3 x 1
giải giùm đi mình tick cho
x4+x3+x+1 = x3. (x+1) + (x+1) = (x3 + 1)(x+1) = (x+1)2.(x2 - x +1) = 0
=> x + 1 = 0 => x = -1
Vì x2 - x + 1 = (x2 - 2.x .1/2 + 1/4) + 3/4 = (x - 1/2)2 + 3/4 >0 + 3/4 = 3/4
Vậy đa thức trên có nghiệm là x = -1
Chứng tỏ rằng đa thức f(x)= x2 + (x + 1)2 không có nghiệm
f(x)= x^2 + (x + 1)^2
= x^2 + x^2 + 2x + 1
= x^2 + x + 1/4 + x^2 + x + 1 + 1/2
= (x + 1/2)^2 + (x + 1/2)^2 + 1/2
= 2(x+1)^2 + 1/2
có: 2(x+1)^2 ≥ 0
2(x+1)^2 + 1/2 ≥ 1/2 > 0
vậy f(x) ko có nghiệm
f(x)= x^2 + (x + 1)^2
= x^2 + x^2 + 2x + 1
= x^2 + x + 1/4 + x^2 + x + 1 + 1/2
= (x + 1/2)^2 + (x + 1/2)^2 + 1/2
= 2(x+1)^2 + 1/2
có: 2(x+1)^2 ≥ 0
2(x+1)^2 + 1/2 ≥ 1/2 > 0
vậy f(x) ko có nghiệm
1. Cho đa thức f(x) thỏa mãn (x^2-4x+3) f(x+1)= (x-2) f(x-1). Chứng tỏ rằng đa thức f(x) có ít nhất 3 nghiệm.
2. Đa thức f(x)= ax^2-x+b, a khác 0 có nghiệm x=2. Biết rằng tổng của hệ số cao nhất và hệ số tự do là -7. Tìm a và b
1) \(\left(x^2-4x+3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)
Với \(x=1\): \(0=-1f\left(0\right)\Leftrightarrow f\left(0\right)=0\)do đó \(0\)là một nghiệm của đa thức \(f\left(x\right)\).
Tương tự xét \(x=2,x=3\)có thêm hai nghiệm nữa là \(3\)và \(2\).
2) \(f\left(2\right)=4a-2+b=0\Leftrightarrow4a+b=2\)
Tổng hệ số cao nhất và hệ số tự do là \(a+b\)suy ra \(a+b=-7\).
Ta có hệ:
\(\hept{\begin{cases}4a+b=2\\a+b=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=9\\b=-7-a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=-10\end{cases}}\).