f(x)= x^2 + (x + 1)^2
= x^2 + x^2 + 2x + 1
= x^2 + x + 1/4 + x^2 + x + 1 + 1/2
= (x + 1/2)^2 + (x + 1/2)^2 + 1/2
= 2(x+1)^2 + 1/2
có: 2(x+1)^2 ≥ 0
2(x+1)^2 + 1/2 ≥ 1/2 > 0
vậy f(x) ko có nghiệm
f(x)= x^2 + (x + 1)^2
= x^2 + x^2 + 2x + 1
= x^2 + x + 1/4 + x^2 + x + 1 + 1/2
= (x + 1/2)^2 + (x + 1/2)^2 + 1/2
= 2(x+1)^2 + 1/2
có: 2(x+1)^2 ≥ 0
2(x+1)^2 + 1/2 ≥ 1/2 > 0
vậy f(x) ko có nghiệm